《解説》

実機バイオエタノール脱水用ゼオライト膜の現状

近藤正和

元 三井造船株式会社

バイオエタノール無水化用蒸気透過(VP) 膜プロセスが設計される前に, 商業上利用可能な ゼオライト膜のVP特質が, 水/エタノール系で調べられた。ゼオライト膜は, 非常に優れた VP 膜性能を示した。ゼオライトNaA 膜によるバイオエタノールのVP 脱水実験が, 実験室規模 の蒸留と膜の組み合わせプロセスで繰り返し行われた。蒸留処理されたバイオエタノールは, NaA 膜性能にほとんど影響を与えなかった。リトアニアのバイオエタノール生産工場向け脱水 プラント(生産量60,000 kg/day, 135 ℃, 84.8 wt% エタノールから99.8 wt%以上まで脱水)が, 計画された。この装置は, 550 本/モジュールの長尺円筒型膜モジュール6基から成っていた。 2005 年3 月の初期運転では, 生産量は125 ℃の操作条件で設計値を超えていた。供給蒸気に含 まれる汚染物質により, 膜性能の低下および膜劣化が生じた。2006 年9 月に, 劣化膜がT型膜 に入れ替えられ, プラント運転温度が145 ℃まで上げられ, 2006 年12 月まで運転された。その 後, ステージ1 (No.1 及び2 のモジュール)の膜すべてが, 交換された。入口ノズルの近くはT 型膜で, それ以外は新規NaA 膜が用いられた。このプラントによる無水バイオエタノールは, 今までのところ支障なく生産されている。

キーワード:蒸気透過、ゼオライト膜、長尺円筒型モジュール、脱水、バイオエタノール

1. はじめに

カーボンニュートラルであるバイオ燃料の関心が, 世界的に急速に高まっている。各国における地球温 暖化対策として,また世界的なエネルギー需要増大, 原油価格高騰の対処法からもバイオ燃料の導入が有 意義と考えられている。なかでもバイオエタノール は,ブラジルとアメリカですでにガソリンへの混合 燃料として利用され,欧州でもガソリンへの添加が, 始められている。ガソリンへの混合燃料として利用 されるバイオエタノールは,無水エタノールに精製 されるのが一般的である。

バイオエタノールの無水化には,共沸蒸留, 膜分 離および吸着分離による方法があり,それぞれ一長 一短を有する。ブラジルでは共沸蒸留,アメリカで は吸着分離が,主に用いられているのに対し,欧州

受理日:2008年4月1日 〒290-0003 千葉県市原市辰巳台東4-11-22 e-mail: xgb75346@biglobe.ne.jp では所要エネルギーの省エネルギー性から, 膜分離 の利用が検討されている。膜利用の形態は, 蒸留と 膜とのハイブリッドで, 蒸留塔からの留出蒸気を膜 により脱水・精製する蒸気透過(VP)法である。こ のハイブリッドプロセスは, 吸着分離のような共沸 蒸留代替観点からの省エネルギーのみでなく, 蒸留 塔塔頂留出エタノール濃度を低く抑制することで, 還流凝縮エネルギーを1/10以下に大幅に削減する¹⁾。 VP用の膜として, 耐熱性, 耐薬品性, 機械的強度 および高い膜性能が要求され, 従来の高分子膜では 適用が難しかったが, ゼオライト膜の商業化により, 蒸留・膜の商業ハイブリッドプロセスの実現が可能 となった。

北欧リトアニアのアルコール飲料メーカーで,余 剰となった飲料用アルコールの無水化(濃度99.8 wt%以上,30,000 kg/日)が計画され,2004年12 月に無水化用の世界最大級の膜面積を有するゼオラ イト膜モジュール6基(550本/モジュール,有効 膜面積16 m²/モジュール)がphase 1プラントと してこの飲料メーカーに納入された。2005年3月 EU 地域向けガソリン添加用無水バイオエタノール 製造のため、このプラント (phase 1) が稼動しはじ め、この実績により同年9月にはphase 1プラント と全く同じ脱水能力を有するバイオエタノール製造 プラント (phase 2) が増設された。この飲料メーカ ーのバイオエタノール製造プラントは、2006年12 月に一部 (第一ステージ)の膜が新膜に交換された ものの、現在も支障なく稼動中で、無水バイオエタ ノールを製造している。

また、2007年4月にリトアニアの5倍弱の製造能 力を有する無水バイオエタノール製造プラントが、 フィンランドSt1で建設されはじめた。このバイオ エタノール製造プラントでは、濃度99.7 wt%以上に 無水化されたバイオエタノールが126,000 kg/日製 造される計画である。このプラントに用いられるゼ オライト膜モジュールは、リトアニア用モジュール の約4倍の規模(1,760本/モジュール、有効膜面積 50 m²/モジュール)で、このモジュールを8基備 えたプラントは、2008年4月に運転開始予定である。

本稿では,脱水膜として実用化されているゼオラ イト膜の浸透気化 (PV) およびVP 特性,モジュー ル構造,リトアニアで稼動中のバイオエタノール脱 水用ゼオライト膜の現状を述べる。

2. PV (VP) 分離

PV (VP)の原理は極めて簡単である。処理対象 成分と親和性のある分離膜を用い,膜の供給側に混 合物を流し,その透過側を減圧もしくは不活性ガス を流すことで,各成分の透過速度差により分離が行 われる。

ミクロ孔を有するゼオライト複合膜では、ミクロ 孔膜の立場で分離の過程が以下のように説明できる。 混合物中のある分子が十分大きなサイズで、ミクロ 孔に入り込むことができない場合、分子ふるいによ る分離が起こる。両成分分子が共に孔を通過できる サイズの場合、分離は孔への吸着性と孔中の拡散性 の違いによって生じ、特に、ある成分が選択的に吸 着し、他の成分分子が孔に入ることをブロックする とき、高い分離能が生じる。これとは別に、高分子 膜と同じように、吸着拡散モデルで説明される場合 もある。このモデルによれば、膜分離の過程は、供 給側で膜へ選択的に吸着、膜中を選択的に拡散、透 過側で膜から蒸気で脱着という三つの過程から成り 立っている²⁻⁴⁾。

いずれの場合も膜の両側における各成分の蒸気圧 差が,膜透過の駆動力であるため,膜透過流束は温 度が高いほど大きい。透過物が液から蒸気へと相変 化するPVに対し,VPでは相変化は起こらない。相 変化に必要な蒸発潜熱が膜に隣接した環境から補わ れるため,PVでは供給液温度低下が生じるが,VP では供給側の温度低下は起こらない。膜分離システ ムとしては,膜モジュールのほかに,PVではこの 蒸発潜熱を補給する加熱システム(VPでは必要な い),透過側を減圧にするためのシステムおよび膜 透過蒸気を回収するためのシステムで構成される。

膜の性能はPV, VPともに透過流束Q(kg/m²h) と分離係数 α の二つの指標で表される。分離係数 α はA, B2成分系の場合,供給側と透過側のA, B成 分の濃度をそれぞれ X_A , X_B および Y_A , Y_B とすると, $\alpha_{A/B} = (Y_A/Y_B)/(X_A/X_B)$ で表される。

3. ゼオライト複合膜

3.1 製膜

ゼオライト膜を実用化するためには、安価な高性 能膜の量産が必要とされる。高性能膜を作製するた めには、ゼオライト結晶を支持体全体に均一に緻密 にしかも薄く析出させねばならない。支持体表面形 態に最適な種結晶サイズおよび塗布量を見出すとと もに、水熱合成時の支持体溶出を抑えることで、工 業用の高性能ゼオライト膜が得られた。

NaA型ゼオライト膜⁵⁻⁷⁾の水和ゲルはケイ酸ナト リウム,水酸化アルミニウム,水酸化ナトリウムお よび純水で作られる(Al₂O₃:SiO₂:Na₂O:H₂O = 1:2:2:120)。一方,T型ゼオライト膜⁸⁻¹¹⁾の水和ゲル は湿式シリカ,アルミン酸ナトリウム,水酸化ナト リウム,水酸化カリウムおよび純水で作られ (Al₂O₃:SiO₂:(Na₂O + K₂O):H₂O = 1:54:20.79:863), 24時間熟成される。

ゼオライト膜は,種結晶が塗布された多孔円筒状 ムライト支持体(気孔率約40%,平均細孔径1µm) をこの水和ゲル中へ浸漬し,100℃で水熱処理(A 型膜は3.5時間,T型膜は30時間)することにより, 支持体外表面に形成される。

図1に,水熱合成法により製膜されたNaA型膜と T型膜の表面及び横断面の走査型電子顕微鏡(SEM) 写真を示す。得られたNaA型膜の表面は、2~4 µm

図1 ゼオライト複合膜の表面および断面SEM写真(1-NaA型, 2-T型ゼオライト膜)

図2 湿りガス透過法によるゼオライト膜のKelvin 径計測 結果

の結晶により密に覆われ、ランダム結晶配向であり、 膜厚は10 μ m程度である。T型ゼオライト膜の表面 は0.1 μ m径×1.3 μ m長程度の細円柱状結晶により 粗く覆われており、A型膜と異なり多少の結晶配向 が認められる。膜厚は20~30 μ m程度である。電子 線マイクロアナライザー(EPMA)による膜横断面 方向のSi/A1比の分布から、支持管の外側表面は表 面のゼオライト結晶層とその下の中間層で構成され た複合膜である¹⁰⁻¹²ことが分かった。

3.2 ゼオライト複合膜の特性

実用化されたゼオライト膜は,結晶粒界が存在す る多結晶膜である。低分子の透過・分離には,ゼオ ライト固有の細孔,結晶粒子の界面に存在するミク ロ孔およびゼオライト結晶と支持体孔との界面のミ クロ孔の寄与が考えられる。

図2に湿りガス透過の動力学法¹³⁾によるNaA型膜 とT型膜の測定結果を示す。2nm以下の孔径に対し 物理的意味を失うKelvin式の制約上,正確な孔径分 布測定値ではないが,ミクロ孔の比較には有効な方 法である。

膜の平均細孔径を50%無次元透過係数のKelvin 径と定義すると、A型膜、T型膜の平均細孔径はそ れぞれ1.4 nm、0.8 nmである。一方、凝縮水が窒 素透過をブロックすることにより、NaA型膜では 0.75以上、T型膜では0.61以上の相対湿度(蒸気 圧/飽和蒸気圧)で窒素透過は観察されない。これら のことから、T型膜のミクロ孔分布はNaA型膜より 狭いといえる。

表1にNaA型膜とT型膜のPV(VP)性能を示す。 今までに報告されている水選択性高分子膜に比べ, NaA型膜とT型膜は共に有機物/水混合物のPV(VP) 分離で,非常に優れた水選択透過性を示す。

PV 分離によるゼオライト膜の種々の純成分透過 流束が,図3に相対比較されている。図中には比較 のために,70 wt% エタノール水溶液での水成分透 過流束も表示されている。吸着挙動と同じで,NaA 型およびT型ともに,溶媒の極性が高いほど,膜透 過流束が大きい。また,T型膜のミクロ孔がA型膜 より小さいにもかかわらず,T型膜のアルコール透 過流束がA型膜より高いのは興味深い。

A型ゼオライトはSi/Al比が1であり,(AlO₄)-四 面体とその対イオンのため親水性が強く,高い水分 吸着能を有する。一方,T型ゼオライトのSi/Al比は 3~4で,A型ゼオライトほど強くはないが親水性で, 高い水分吸着能を有する。有機物/水系のPVおよ びVPで,両膜の優れた水選択透過性は,ミクロ孔 への水分子の細孔充填(あるいは毛管凝縮)に起因 し,ミクロ孔が水分子で閉塞され,他の分子が透過 できず,水分子のみが透過することで,生じている

表1 ゼオライト膜のPV およびVP性能

zeolite NaA membrane for water/organic mixtures					
separation system		temp [K]	feed water [wt%]	$\begin{array}{c} Q\\ [kg/(m^2 \!\cdot\! h)] \end{array}$	α [-]
methanol	(PV)	323	10	0.319	2,100
ethanol	(PV)	348	10	1.691	10,000
	(VP)	408	10	13.71	15,000
	(VP)	408	5	8.403	30,000
	(VP)	408	0.5	0.767	3,500
i-propanol	(PV)	348	10	2.278	10,000
acetone	(PV)	323	10	0.816	5,600
dioxane	(PV)	333	10	1.091	9,000

T type zeolite membrane for water/organic mixtures

÷ 1	6				
separation system		temp [K]	feed water [wt%]	$\begin{array}{c} Q\\ [kg/(m^2 \!\cdot\! h)] \end{array}$	α [-]
methanol	(PV)	323	10	0.359	27
ethanol	(PV)	348	10	1.43	2,100
	(VP)	408	10	11.6	3,500
i-propanol	(PV)	348	10	2	10,000

図3 純成分に対するゼオライト膜のPV 特性(透過流束の 相対比較,70 wt%EtOH水溶液での水透過流束も表示)

と考えられる。

図4にNaA型ゼオライト膜の水透過流束に対する 水蒸気分圧の関係を示す。T型膜では、メタノール 水溶液を除き、同様の関係が得られた。用いられた PVにおける水蒸気分圧は、Antoine式およびWilson 式より計算された。透過側圧力が供給側に比べ無視 できる場合、PV・VP(飽和あるいは過熱度が低い 条件)でのNaA型膜およびT型膜の水透過流束は、 有機溶媒の種類にかかわらず供給側水蒸気分圧に比

図4 NaA型ゼオライト膜の水透過流束に及ぼす供給側水 蒸気分圧の影響

例する。一方, VPの過熱度が大きくなると,透過 流束および分離係数は低下する^{7,10)}。これは膜中に 存在するミクロ孔で,水分子により細孔充填(ある いは毛管凝縮)しないミクロ孔が出現するためと考 えている。

操作温度75 ℃,供給エタノール濃度90 wt%で膜 透過側圧力0.133 kPa~2.6 kPaにおける透過流束と 分離係数は,透過側圧力に比べ供給側水蒸気分圧が 大きいため,ほとんど一定であり高い水選択性を示 す。一方,供給エタノール濃度が99 wt%の場合に は,透過側圧力を0.133 kPaから2.6 kPaへと上げて いくと,供給側水蒸気分圧が小さいため,透過側圧 力の影響を受けるようになり,透過流束と分離係数 は透過側圧力の上昇とともに減少する^{7,12}。

3.3 機械的強度および耐熱性

膜の透過側圧力を0.133 kPaにし,操作温度50 ℃ で95 wt% エタノール水溶液の供給液側圧力を1 MPa, 0.1 MPaと交互に繰り返し変化させた場合のゼオラ イト複合膜の様相と各供給液圧力における PV 分離 を調べた結果,膜の異常および膜性能への供給液圧 力の影響は認められなかった。これらの結果から, ゼオライト複合膜は実用上十分な機械的強度を有す ると言える。

表2に電気炉を用いて各種の温度で熱処理した NaA型ゼオライト複合膜のPV分離結果を示す。PV 分離は操作温度75 C, 95 wt% エタノール水溶液で 行われた。

熱処理温度が200 ℃までは透過流束,分離係数は 変化しない。300 ℃以上の熱処理では,透過流束, 分離係数はともに低下した。この結果から,ゼオラ

表2 浸透気化性能に及ぼすNaA型ゼオライト膜の熱処理 条件の影響

Annealing Condition	Membrane Weight [g]	$\begin{array}{c} Q \\ [kgm^{-2} h^{-1}] \end{array}$	α [-]
As-synthesized	16.1251	1.10	5,900
200 °C, 3 h	15.9683	1.11	5,890
300 °C, 3 h	15.9357	0.625	910
500 °C, 3 h	15.8985	0.306	26

evaluation : PV with 95 wt% EtOH at 75 °C

evaluation: PV with 90 wt% EtOH at 75 °C

Dipping Condition	Q	α
Dipping Condition	$[kgm^{-2} h^{-1}]$	[-]
pH4 acetic acid for 7days : before	0.95	530
after	1.25	2,300
pH3 acetic acid for 7days : before	0.97	630
after	1.19	1,300

Schematic view of the long tubular type module

図5 長尺円筒型膜モジュールの概要およびバイオアルコール脱水用蒸気透過膜モジュール (84.8 wt% EtOH, 1,250 kg/hを 99.8 wt%以上に精製)

イト複合膜は200℃までの耐熱性を有すると言える。

3.4 耐酸性

Si/Al比の大きなゼオライトほど, 耐酸性が高い ことは良く知られている。ゼオライト膜を酢酸水溶 液に浸漬し、その前後の水/エタノール系のPV分 離結果で耐酸性を評価した。pH4の酢酸水溶液に24 時間浸清させたNaA 型ゼオライト膜は、分離係数が 1/100程度まで低下し、透過流束が10倍増加した。 この結果から、NaA型膜は、NaA型結晶と同様、酸 には弱いことが分かった。

高木ら¹⁴⁾は, Si/Al比3~4のT型膜をpH4あるい は3の酢酸水溶液に7日間浸漬し、その前後でのPV

分離膜性能変化を調べた。その結果を表3に示す。

彼らによれば、膜に付着していた未反応ゲルの溶 解・離脱が、浸漬3日目まで分離係数及び透過流束 を増加させるが、それ以後は安定したと報告してい る。我々は、未反応ゲルを除去するため、合成直後 の膜を洗浄し、さらに半日純水に浸漬させた。この 膜を乾燥後, 高木らと同じ条件で酢酸浸漬試験を行 ったところ、高木らの結果と異なり、酢酸水溶液の 浸漬前後でT型膜のPV 分離性能に変化は、認めら れなかった。いずれにせよ,両者の結果は,T型膜 に耐酸性があることを示唆している。

表3 T型ゼオライト膜の酸安定性試験結果14)。(酢酸水溶 液への浸清前後での浸透気化分離性能変化)

Feed 84.8w05 EtOH Product 99.8w05 EtOH Flow Rate 60kL/day 膜面積 16.0m2(550本)×6基/Unit ×2Unit

図6 脱水プラント全景写真

図7 脱水プラントプロセスフロー

4. 円筒型ゼオライト膜モジュール

有機,無機膜にかかわらず工業的に利用するため の最少ユニットが膜モジュールである。少流量処理 用の二重円筒型膜モジュールは、レンズ洗浄用IPA 精製用¹⁵⁾に実用化され、多量の処理対象物用に円筒 型ゼオライト膜モジュールが、有機溶媒脱水用¹⁶⁾に 実用化された。VPでは蒸気流速が速いため、圧力 損失を低く抑えると同時に蒸気を膜面に長く接触さ せる長尺円筒型ゼオライト膜モジュールが、VP分 離用に開発された。構造は円筒型膜モジュールと同 じであるが、円筒型膜モジュールでは膜を両管板か ら交互に差し込まれているのに対し, 膜を両管板か ら突き合わせて差し込まれている。図5はバイオエ タノール脱水用に実用化されたVP用長尺円筒型膜 モジュールとその概要で, ゼオライト複合膜550 本/モジュール, 6モジュールで構成されている¹⁷⁾。

モジュールサイズが大きいので,真空容器を用い ず膜モジュールの両サイドにチャンバーが設けられ ている。透過物は膜内側を通り,モジュールの両チ ャンバー内に集められ,コンデンサーで凝縮される。

図8 設計データとプラント運転データの比較

4.1 リトアニアの飲料メーカーにおける脱水プロセス¹⁸⁾

実プラントにはNaA 型膜を用いたVP プロセスが 計画された。VP プロセスでは、系内の圧力損失を 抑え、供給蒸気の膜接触時間を長く保持し、かつ高 いモジュール効率を有するモジュール構造が要求さ れる。そのため、前節の長尺円筒型膜モジュールが、 採用された。脱水プロセス計画では、長尺型モジュ ールには、ゼオライト膜550本/基が組込まれモジ ユール効率0.7. 安全率1.0が用いられた。プラント は6基のモジュールを直列配置, 135 ℃の運転温度 により84.8 wt%のバイオエタノールを99.8 wt%以 上の無水エタノール30,000 kg/日製造できるよう に設計された。この脱水プラントの全景写真とプロ セスフローを図6,7に示す。膜モジュールは2基/ ステージの3ステージに分けられ、エタノールは第 1ステージ (No.1, 2モジュール) で84.8 wt% から 96.7 wt% まで濃縮され, 第2ステージ (No.3, 4モ ジュール)で99.5 wt% まで濃縮された後、最終的に 第3ステージで99.8 wt%以上に精製される計画であ る。透過側圧力は、それぞれのステージに対し最適 な圧力を保持させるため、3系統の減圧系が適用さ れており、より効率的に無水化が行われるように設 計された。このときのシミュレーション結果を図8 に示す。

表4 バイオエタノール無水化プラント性能データ

-	unit	Design	Operation	
			in Mar., 2005	in Sep., 2006
Feed concentration	H ₂ O wt%	15.2	14.4	14.4
Product concentration	$\rm H_2O~wt\%$	0.2	0.1	0.2
Permeate concentration	$H_2O \ wt\%$	75	99	99
Feed flow rate	kg/h	1,250	1,440	1,250
Module inlet temperatur	e K	408	398	418
Permeate pressure	kPa	4	7.5	4

4.2 プラント点検結果

表4に無水エタノール製造プラントの設計値, 2005年3月の初期運転データおよび2006年9月のデ ータを示す。

初期運転結果では、より低い運転温度でも設計値 以上の無水エタノールを製造することができ、長尺 円筒型モジュールの効率が0.9以上であることを示 唆している。しかし、2006年9月のデータでは、モ ジュール効率が0.6程度まで低下したことを示唆し たため、モジュール点検が行われた。汚れ状況を比 較するため、No.1モジュールとNo.3モジュールの 入口ノズル部写真を図9に示す。

点検の結果,第1ステージ(No.1,2モジュール) の膜表面が褐色物質に覆われていた。特に,モジュ ールの蒸気入口ノズル近辺で膜の汚れは激しく,劣 化した膜も認められた。その他のステージでは,膜

No.1 モジュール

No.3 モジュール

図10 汚染膜の外観写真

に異常は認められなかった。図10に汚染膜の外観写 真を示す。比較のため、未使用の膜が示されている。

明らかに, 膜表面が褐色の物質で覆われているこ とが分かる。この褐色物質をICPで分析した結果, SO₄, C, Naイオンが検出された。膜には, SO₄およ びCイオンは含まれていないので,これらのイオン は原料由来によるものである。これらのイオンは, 実験室ベースの蒸留操作ではほとんどカットされた が,実機蒸留操作ではカットできないのか,あるい はミスオペレーションによるものかは不明である。

劣化膜以外の褐色物質に覆われた膜の性能評価を 行った結果,膜の透過流束は初期値の1/50以下,透 過物は水のみで分離係数∞であった。この結果は, 汚染物質が膜表面ばかりでなく,膜欠陥部をも覆っ ていることを示唆している。

本プラントでは,劣化膜のみT型膜と入れ替え, 操作温度を145 ℃に上昇することで2006年12月 (生産量保障期間2年)まで対応した。その後,第1 ステージ(No.1,2モジュール)の膜が新しい膜に 入れ替えられた。入りロノズル近辺にT型膜が適用 され,それ以外はNaA型膜が使用され,プラントは 設計条件で現在も無水エタノール製造に支障なく稼 動中である。

5. おわりに

世界的なバイオエタノール利用拡大のなか,最も 大きな膜面積を有するゼオライト膜モジュールが, フィンランドSt1向け自動車燃料添加用無水エタノ ール製造プラントに適用された。リトアニアの場合 と同様,長尺円筒型膜モジュールが採用され,プラ ントはゼオライト膜1,760本/基,8基のモジュール を直列配置,135℃の運転温度により85 wt%のバイ オエタノールを99.7 wt%以上の無水エタノール 126,000 kg/日製造できるように設計されている。 このプラントは,現在北欧フィンランド/ラップラ ンドに建設,2008年4月に運転開始予定である。

文 献

- Buss-SMS-Canzler GmbH, Customer Information Ethanol/BKA/Marz 2006, Hungry and Kuhni AG, Separation Processes & Technologies Catalog, Gewerbestrasse 28 CH-4123 Allschwil Switzerland.
- N. Nomura, T. Yamaguchi, and S. Nakao, J. Membr. Sci., 144, 161 (1998).
- M. Kondo, Y. Kumazawa, T. Yamamura, J. Abe, H. Kita, and K. Okamoto, *Trans. Mater. Res. Soc. Jpn.*, 29, 2591 (2004).
- S. Sommer and T. Melin, *Chem. Eng. Sci.*, **60**, 4509 (2005).
- H. Kita, K. Horii, Y. Ohtoshi, K. Tanaka, and K. Okamoto, J. Mater. Sci. Lett., 14, 206 (1995).
- K. Okamoto, H. Kita, M. Kondo, N. Miyake, and Y. Matsuo, US Pat., 5554286 (1996).
- K. Okamoto, H. Kita, K. Horii, K. Tanaka, and M. Kondo, *Ind. Eng. Chem. Res.*, 40, 163 (2001).
- K. Okamoto, H. Kita, M. Kondo, and Y. Morigami, US Pat., 6159542 (2000)
- A. Eltner, H.-G. Gobbel, A. Nickel, L. Puppe, M. Kondo, Y. Morigami, K. Okamoto, and H. Kita, EP 0982067 A1 (2000).
- M. Kondo, T. Nakane, H. Kita, and K. Okamoto, *Trans. Mater. Res. Soc. Jpn.*, **27**, 395 (2002).
- 11) Y. Cui, H. Kita, and K. Okamoto, J. Membr. Sci., 236, 17 (2004).
- M. Kondo, M. Komori, H. Kita, and K. Okamoto, J. Membr. Sci., 133, 133 (1997).
- T. Tsuru, T. Hino, T. Yoshioka, and M. Asaeda, J. Membr. Sci., 186, 257 (2001).
- 14) 高木俊介, 喜多英敏, 岡本健一, 近藤正和, 化学工学シンポジウムシリーズ, 66, 90 (1998).
- 15) M. Kondo, T. Yamamura, T. Yukitake, Y. Matsuo,

H. Kita, and K. Okamoto, Sep. Purif. Tch., 32, 191 (2003).

- 16) Y. Morigami, M. Kondo, J. Abe, H. Kita, and K. Okamoto, Sep. Purif. Tech., 25, 251 (2001).
- 17) T. Yamamura, M. Kondo, J. Abe, H. Kita, and K.

Okamoto, Proc. 10th APCChE Congress, Kitakyushu Japan (2004).

18) 近藤正和,山村忠史,杉本悦夫,喜多英敏, 膜シンポジ ウム, 19, 49 (2007).

Present Condition of Zeolite Membranes used in Bio-ethanol Plant

Masakazu Kondo

Past Mitsui Engineering & Shipbuilding Co., Ltd.

Vapor permeation (VP) properties of commercially available zeolite membranes (dimensions of 12 mm o.d., 9 mm i.d. and 800 mm length) were examined in the water/ethanol systems, which were distilled by lab-scale column, before equipments to produce anhydrous bio-ethanol were designed. The membranes displayed extremely excellent water-permselective performance for the water/ethanol systems in VP. The repeated experiment of ethanol dehydration by VP with a zeolite NaA membrane was carried out using bio-ethanol liquid which was distilled by lab-scale column. The distilled ethanol hardly influenced the NaA membrane performance in VP. The dehydration equipment which can dehydrate $60,000 \text{ kg day}^{-1}$ of ethanol at less than 0.2 wt% water from 84.8 wt% ethanol at 135 °C was designed for bio-ethanol production plant in Lithuania. This equipment was consisting of 6 long tubular type modules, which was composed of 550 zeolite membranes. In the initial operation result at 125 $^{\circ}$ C in March, 2005, the ethanol was dehydrated over the designed value of 135 $^{\circ}$ C. By the lowering of membrane performance by the fouling included in the feed vapor, the operating temperature of the plant was raised to 145 °C in September, 2006, and then the plant was operated until December, 2006. Membranes in stage 1 (No.1 and 2 modules) were replaced in December, 2006. T-type membranes were applied near the entrance nozzle and NaA membranes were used except for there. Then anhydrous bio-ethanol in this plant has been produced without a hitch up to the present.

Keywords; Vapor permeation, Zeolite membrane, Long tubular type module, Dehydration, Bioethanol