《解説》

銅イオン交換ゼオライトによる室温での

窒素,水素の特異吸着現象

黒田 泰重

岡山大学大学院自然科学研究科

室温で窒素や水素分子に対して特異な吸着特性を示す物質はほとんど知られていない. 我々 は銅イオン交換ゼオライト(特に,銅イオン交換MFI型ゼオライト: CuMFI)が室温でさえ, 窒素や水素に対して極めて高い吸着特性を示すということを見いだした. ゼオライト中で三配位 の構造をとる一価銅イオン種からなるサイトが窒素の吸着に活性であることを明らかにした。イ オン交換法を工夫し,酢酸銅と酢酸アンモニウムを含む水溶液をイオン交換液として用いる方法 が,高い吸着能を示す試料の調製のために有効であることがわかった。このイオン交換法によっ て,窒素吸着に対して活性なサイトに銅イオンが選択的にイオン交換され,二価の銅イオンから 一価の銅イオンに高効率で還元されることが,それらが高い窒素吸着特性を示す要因であること を明らかにした。一方,水素は一価の銅イオンに η^2 型で吸着すること,この吸着水素種が室温 でも活性化されることも見いだした。これらの現象をうまく利用すると,窒素の固定化剤・活性 化剤,水素の吸着・活性化剤の開発などへの応用も期待できる。

キーワード:室温での窒素・水素分子吸着,銅イオン交換MFI型ゼオライト, end-on型吸着 窒素,η²型吸着水素,XAFS

1. はじめに

固体無機化合物の表面は,結合不飽和なサイトが 多量に存在し,極めて高い反応性を有するため,表 面の性質はバルクのそれとは大きく異なる。この特 性(反応性)を利用すれば,固体表面上にバルクの 性質と全く異なる性質をもつ物質を創製することが できるものと期待される。見方を変えれば,それら は表面新化合物とも捉えることができる。これらの 点から,表面は特異な反応場として働くことが期待 される。実際,Au/TiO₂上のAu はバルクの性質と は全く異なる極めて高い反応性を有することなど 種々の現象が見い出されている。¹⁾この表面場の効 果にナノサイズの細孔という特殊場の効果を加えて

受理日:2009年10月31日

〒700-8530 岡山県岡山市北区津島中3-1-1 岡山大学大学院自然科学研究科機能分子化学専攻 (理学系)

e-mail: kuroda@cc.okayama-u.ac.jp

やれば,更に特異な性質をもつ物質を表面上に合成 する(反応活性サイトを構築する)ことができるも のと期待される。我々はこういう観点から,ナノサ イズの細孔中(ゼオライト中)にイオン交換された 金属イオンの特異吸着現象の検討を行ってきた。

銅イオン交換ゼオライト,特にMFI型 (CuMFI と略記)、はNOxの分解活性が極めて高いことから

Scheme 1 NO decomposition mechanism where two copper ions exchanged in MFI act as the active sites.

触媒として注目される極めて興味深い物質である (スキーム1に我々が提案しているNO分解反応のメ カニズムを示す)。2-10) これに基づき、我々は当初 銅イオン交換ゼオライト中で高いNOの分解活性を 示す銅イオンの状態解析をめざした。その過程にお いて、銅イオンでイオン交換したMOR 型やMFI 型 ゼオライト (それぞれ, CuMOR, CuMFIと略記) を真空熱処理した試料が室温で窒素分子と極めて強 く相互作用するという思いもしない興味深い現象を 世界で初めて見出した。11)通常,窒素は不活性な気 体とみなされているが. 我々が見いだしたこの現象 を応用すれば室温での新規な窒素吸着剤・活性剤の 開発も夢ではない。しかし、この窒素吸着サイトの 状態についてはほとんど明らかになっていない。そ こで、この銅イオンの状態を解析するために、水素 の吸着実験も行った。その研究過程で,水素吸着に ついても、 室温での特異吸着現象やH-D 交換現象を 見出した。12) これらの点から、銅イオン交換ゼオラ イト試料は小分子の活性化や吸着・分離剤として利 用可能であるといって良い。我々は種々の方法で調 製したCuMFI試料の窒素・水素吸着特性を基礎とし て、ゼオライト中の窒素および水素吸着高活性な銅 イオンの状態の解明を行い、より高活性な吸着能を 有する試料の調製とデザインを行うことを目的とし て研究を進めている。

ここでは、室温での窒素や水素吸着現象の吸着活 性サイトの解析結果および水素吸着過程を経るH-D 交換反応の解析結果などについて紹介する。

2. 銅イオン交換ゼオライトへの窒素の特異吸着現象 11,13-36)

2.1 高窒素吸着特性を有する試料の調製 — 効率的 イオン交換法の開発

一般に、室温付近では窒素は不活性な気体と認識 されており、室温での強い吸着現象は観測されない (窒素の臨界温度は126.3 K,臨界圧力は33.54 atm である)。我々は、銅イオンでイオン交換したゼオ ライト(特に、MOR型やMFI型)を真空中高温で 処理した試料が、室温で窒素が吸着する現象を見い 出した。これまでの研究により、窒素の吸着活性サ イトは真空下で高温処理により形成された一価の銅 イオン(Cu+)であること、MFIやMOR等のハイ シリカ型ゼオライト中でCu+の状態が安定化される こと、イオン交換サイトは少なくとも二種類存在し、 そのうちの一種類が窒素吸着に有効なサイトとして 機能することが主要な因子である事を明らかにして きた。さらに、室温での窒素の吸着現象を解析する ために、種々のイオン交換法で調製した試料を用い て検討を行った。ここで、Cu交換試料を Cuzeolites(YYY)-Xと表すこととしYYYはイオン交 換に用いた溶液の略称(C,塩化銅水溶液:P,プロ ピオン酸銅水溶液;A,酢酸銅水溶液;AAA,酢酸 銅と酢酸アンモニウム水溶液)、Xはイオン交換量% を示す。イオン交換量は一価のナトリウムイオン二 個が二価の銅イオン一個でイオン交換された時をイ オン交換量100%と定義している。

図1(a)に、試料の調製法などに依存した窒素の吸 着量等温線(298 K)を示す。いずれの試料も873 Kで真空前処理してある。図から、CuMFI(AAA)試 料の吸着量はCuMFI(A)試料のそれより高いこと、 CuMFI(C) 試料よりCuMFI(P) 試料の吸着特性が高い ことがわかる。また、異なるタイプのゼオライト試 料に塩化銅水溶液を用いてイオン交換した試料への 窒素吸着等温線(図1)から,MFI型試料の吸着特 性がMOR, USY, Y型のそれよりすぐれていること がわかる。これらの事実は、窒素の吸着量は、ゼオ ライト細孔構造, Si/Al 比およびイオン交換量やイ オン交換法に依存することを示している。特にイオ ン交換法として、有機酸イオンを含む水溶液による イオン交換が有効であり、特にAAA法は大変有効 である事がわかる。これは、サイト選択的イオン交 換が起こっていること,配位能力の高い有機酸イオ ンが銅イオンに配位した状態でイオン交換し、熱処 理過程で還元剤として機能するとともに、イオン会 合種がイオン交換のサイト選択性に寄与しているこ とによる。また, ゼオライト骨格やSi/Al 比がイオ ン交換後の状態や還元特性に影響を与えているもの と考えることができる。サイト選択的にイオン交換 が起こるのは、有機酸配位子、たとえばプロピオン 酸陰イオンとの会合種の空間的大きさの効果である と考えている。参考として図2にMFI中での酢酸イ オンおよびプロピオン酸イオンそれぞれと銅イオン の会合種の大きさを示す。この図からプロピオン酸 イオンと銅イオンとの会合種がゼオライトのNa+と イオン交換した場合、その会合種の大きさはMFI型 ゼオライト中の細孔の大きさより少し大きいサイズ

(10)

 $\boxtimes 1$ (a) Adsorption isotherms of N₂ at 298 K on copperion-exchanged zeolite samples prepared by various ion-exchanging methods.

となり、細孔を形成している壁との立体的な反発は、 酢酸イオンと銅イオンとの会合種からなる場合との 反発と比べて、大きくなると推定できる。実際、プ ロピオン酸銅水溶液を用いてイオン交換を行うと, イオン交換率が100%程までの試料しか調製できな い。そこで、酢酸銅を用い、しかも酢酸陰イオン種 を溶液中に過剰に加えて,水溶液中での酢酸イオン と銅イオンとの会合種の量を増やすことによって空 間の大きさ、サイト選択性、還元率のそれぞれの条 件をできるだけ満足させるような条件下でイオン交 換イオン交換を行った。この方法が上述のAAA法 である。この方法で調製した試料の窒素吸着量は, 図1に示したように最大であった。窒素吸着量の最 も多い試料[CuMFI(AAA)-130]について、CO分子 の吸着等温線(298 K)を測定し、これより全銅イ オン量に対する一価銅イオン量の割合 Cu+/(Cu++Cu2+)を0.86と見積ることができた。さら に、この試料では、Cu⁺の約82%が窒素分子に対し て吸着活性サイトとして働くことがわかった。さら に, 三配位の銅イオン種(後述)がより選択的に形 成されていることもわかった。この窒素吸着の吸着 平衡に達する時間を調べた結果を図3に示す。これ より、約30秒以内には平衡が達成されている。窒素 より強い吸着が起こるCO吸着の平衡時間とN2吸着 のそれほとんど同じである。これらの点も、大変興 味深い結果である。このように、この試料の窒素に 対する特異性は特筆すべきことである。

 $\boxtimes 1$ (b) Adsorption isotherms of N₂ at 298 K on various types of copper-ion-exchanged zeolites.

⊠ 2 Schematic representation of the ion-exchanged models of copper ion into MFI. Copper ion is exchanged in the forms of (a) [Cu(CH₃COO)]⁺ and (b) [Cu(C₂H₅COO)]⁺.

 $\boxtimes 3$ Change in the pressure in the adsorption processes of N₂ and CO on CuMFI at 298 K.

 \boxtimes 4 FT-IR spectra of N₂ species adsorbed on CuMFI-130 at 300 K in the fundamental, combination, and overtone regions.

2.2 窒素の吸着サイトの状態解析

室温でCuMFI-130の吸着Nっ種の赤外線吸収スペ クトルをそれぞれ基準振動,結合音,倍音振動領域 で測定した(図4)。気体の窒素分子は双極子モーメ ントをもたないので赤外線吸収バンドは観測されな い。それにも関わらず、吸着窒素種に帰属できる強 い赤外線吸収バンドが2295 cm-1に観測される。吸 着種の結合音、倍音に由来するバンドも観測される。 吸着種の基準振動と結合音によるバンドから Cu-N = N 種のCu-N 結合の振動は360 cm⁻¹程度と 見積ることができる。窒素の吸着熱のデータも示す (図5)。初期吸着熱から、Cu⁺-N₂種の結合エネルギ ーは87 kJ mol-1程度と見積ることができた。この 値は室温での窒素吸着熱としては極めて大きい(N ■N結合の解離エネルギーの一割程度の大きさ,窒 素の蒸発熱は約5.6 kJ mol-1)。このような室温で の窒素分子の強い吸着は極めて特徴的な現象である といえる。

873 Kで真空熱処理したCuMFI 試料について, 窒 素吸着前後のEXAFSの解析結果およびXANES スペ クトルを図6に示す。873 Kで処理後のCuMFI中の 銅イオンについて, EXAFS データをみると特徴が 見いだされる。1.6 Å付近に観測されるバンドは銅 イオンの最近接の位置に存在するゼオライト骨格の 酸素原子(第一配位圏)からの後方散乱によるバン ドに帰属できる。EXAFS 解析の結果, 銅イオンの 周りに存在する酸素原子の数(配位数*N*)は2.7, 距 離(*r*)は1.965 Åと見積る(図6(a))ことができ た。このデータおよび発光スペクトル,紫外可視・ 近赤外部の吸収スペクトル, COをプローブ分子と

⊠ 5 Adsorption isotherms and differential heats of adsorption of N₂ on CuMFI(AAA) at 298 K. Filled and open marks represent the first and second adsorption runs, respectively. The first adsorption was measured for the sample evacuated at 873 K, and then the sample was evacuated at 298 K, followed by the measurement of second adsorption.

☑ 6 (a) Fourier transform of the EXAFS oscillations at the K-edge of the copper ion exchanged in the CuMFI sample and (b) XANES spectra of CuMFI in the respective stages.

して測定した赤外線吸収スペクトルデータを考慮し, 銅イオンには二配位(歪んだ直線型)と三配位(三 方晶型)構造を取っている二種類のタイプの銅イオ ンが存在すると解釈した。873 Kで真空熱処理した

 \boxtimes 7 Experimental (solid line) and calculated (dashed line) Fourier-fitted k^3 EXAFS and its Fourier transform for CuMFI: (1) the sample evacuated at 873 K and (2) the sample on which N₂ was adsorbed.

試料のXANESスペクトルにおいて、Cu⁺の1s-4p 遷 移に帰属できるバンドが8.983 keV(1s-4p_#遷移)と 8.995 keV (1s-4p。遷移)の二つの成分に分裂して観 測される(図6(b))。この結果は上述の二配位および 三配位モデルそれぞれの場合において説明可能であ る。この試料を室温で窒素ガスにさらすと8.983 keVのバンド強度が著しく減少する。更に、この試 料を室温で排気すると8.983 keVのバンド強度はほ ぼ元の強度まで回復することがわかる。これらの結 果から,窒素の吸着サイトはわずかに歪んだ三方晶 平面構造(三配位構造)をとっているCu+であると 考えると現象を矛盾無く説明できる。即ち,この銅イ オン上に窒素が吸着して、銅イオンは歪んだ四面体 構造をとる結果,4p軌道エネルギーレベルに変化が 生じ,結果として,4pレベルへの遷移が少し高エネル ギー側にシフトしたものと定性的に解釈している。27) この試料の窒素ガス存在下(室温)でのEXAFS

☑ 8 The optimized structure of N_2 species adsorbed on Cu⁺ which takes the three-coordination structure. In this calculation, the simple model ($H_{12}O_4Si_4Al$) was used as the model of zeolite lattice.

スペクトルにおいて,第一配位圏によるバンドの幅 は広がる。一方,再排気後のスペクトルのバンド幅 は窒素吸着前のそれと線幅がほぼ同じであることが わかる。窒素ガス存在下でのスペクトルを酸素原子 と吸着窒素の窒素原子からの散乱の寄与が存在する と考え,カーブフィッティングを行った。結果は, 図7(2)に示すように, $N(Cu-O)=2.7\pm0.2, N(Cu-N)=1.1\pm0.1; r(Cu-O)=1.97\pm0.01$ Å, $r(Cu-N)=1.91\pm0.01$ Åの二つの原子の存在を仮定すること によって,実験データが良く再現されることがわか る。²⁸⁾

密度汎関数法を窒素吸着系に適用し、その状態の 吸着窒素の赤外伸縮振動の波数および吸着熱を求め た。その際、ゼオライトのモデルとしては $H_{12}O_4Si_4Al$ という簡単なモデルを採用した。計算の 結果、それぞれ、2305 cm⁻¹および101 kJ mol⁻¹と 求まった。それらの値は、実験値と良く一致すると 言って良い。これらの結果は、三配位銅イオン上に 窒素がend onの状態で吸着するというモデルの妥当 性を支持する(図8)。

(12)

 $\boxtimes 9$ Schematic adsorption model of N₂ on the monovalnet copper ion formed in MFI.

以上,窒素吸着に有効なサイトは一価の銅イオン であり,MFI型ゼオライト中で極めて安定なCu+種 が形成されることがわかった。更に,CuMFI中のあ る特定のサイトにイオン交換した一価銅イオンが室 温での窒素吸着現象に対して活性サイトとして働く ことも明らかになった。この銅イオンは三配位の状 態をとることも提案した(図8,図9)。また,この イオン交換サイトに選択的にイオン交換する方法も 開発した。この窒素の吸着現象は室温で数十秒以内 に起こることも明らかにした。この特異な吸着現象 を利用すれば,本試料の産業的な応用も期待できる。

3. 室温でのCuMFIへの水素吸着特性^{12,37-42)}

現代社会におけるエネルギー源として,化石燃料 への依存度は極めて高く,そのことに由来する環境 汚染(CO₂由来の地球温暖化,大気汚染物質として のCO,CH,NOxおよび浮遊粒子状物質など)が問 題となっている。その問題回避のための究極のエネ ルギー源として水素が注目され,来るべき水素社会 を切望する声が高まっている。特に,2003年2月に 米国のブッシュ大統領が「水素社会」の実現に向け た大規模プロジェクトの開始を宣言して以来である。 しかし,水素をエネルギーとして利用する社会を確 立していくためには水素の製造,貯蔵,移動等問題 点は山積されている。

 \boxtimes 10 IR spectra of CuMFI before and after H₂ adsorption at 300 K.

3.1 室温での水素吸着現象

臨界温度の低い水素(臨界温度: 33.23 K, 臨界 圧力: 12.8 atm)の貯蔵法としては,現在,高圧水 素タンク,水素貯蔵合金,および液体水素タンク等 の検討がなされている。近年は水素の化学吸着を利 用した貯蔵法として,金属水素化物の利用が検討さ れ,より低温で水素と反応し、しかも容易に再生可 能である材料の開発をめざした研究がなされている。 一方,水素の物理吸着を利用した貯蔵法として金 属- 有機化合物の骨格からなる化合物やカーボンナ ノチューブ、ゼオライトなどの無機材料を利用した 貯蔵法などが注目されている。我々は最近, 銅イオ ン交換MFI型ゼオライト (CuMFI) の吸着特性の研 究過程で、その物質が室温でさえ水素と強く相互作 用するという興味深い現象を見出した。前述のよう に、CuMFIを873 Kで真空処理するとイオン交換さ れている二価の銅イオンは一価のイオンとなる。こ の状態で水素を室温で吸着させると、吸着水素分子 による赤外線吸収バンドが3300, 3100 cm-1付近に 観測された(図10)。また. CuMFI 試料を873 K で 真空排気後,298 KでH2の吸着等温線(一次)を 測定した。その後298 Kで真空排気し、298 Kで二 次吸着等温線(二次)を測定した。まず、室温で水 素吸着が起こること、さらに、吸着等温線は Langmuir 型に近い等温線であることから、CuMFI 上に強い水素の吸着サイトが存在することが示唆さ れる。また、一次と二次の等温線の吸着量に差があ ることは、298 Kでさえ不可逆吸着が起こっている

 \boxtimes 11 Adsorption isotherms of H₂ at 298 K on CuMFI(AAA)-136 which had been evacuated at 873 K.

ことを示している。このように、吸着等温線のデー タからも水素との強い相互作用が存在することが明 らかである (図11)。水素分子の赤外線吸収バンド が観測されること、および吸収波数のシフト値が大 きい (約1000 cm⁻¹) こと等を考慮し、873 K処 理によって形成された一価の銅イオンと水素分子が γ^2 型の結合種を形成して強く相互作用し、赤外線 吸収バンドを与えるものと解釈している。この結論 は発光スペクトルやXANESのデータからも示唆さ れた。

3.2 水素の活性化現象

873 Kで真空排気したCuMFI(AAA)-136 に重水素 (D₂)を導入 (3.3 kPa) すると, 2210 cm⁻¹付近に バンドが出現した.2210 cm-1に出現するバンドは、 CuMFIへの吸着H₂種による吸収バンド(3115 cm⁻¹) から求めた吸着D2種の振動波数に一致することから, D_2 の伸縮振動バンド (v_{D-D}) に帰属できる。その後, 閉鎖系で反応温度を変化させた過程のIR吸収スペク トルを図12に示す。比較のために、HMFI 試料に対 して行った同様の実験結果も示した。CuMFI中に存 在するブレンステッド酸OH 基が吸着D2と同位体交 換を起こし、新たにブレンステッド酸点上のO-D伸 縮振動にバンドの出現が観測できる(室温でさえ観 測され、473 Kでほぼ完全な交換が生じる。一方、 HMFIでは,室温においては,H-D交換は生じないこ と、および673 Kで行っても完全交換は起こらない ことがわかる)。即ち、CuMFI 試料中に存在するブ

Scheme 2 H-D exchange reaction of H of the Brønsted acid sites in CuMFI with adsorbed D_2 molecules

レンステッド酸点(-OH)上の水素とD₂との間で H-D 交換が室温でさえ起こり,O-D 伸縮振動バンド が観測されることも分かった。この現象はCuMFI 上で活性化されたD₂が試料中を拡散する現象(スピ ルオーバー現象)によりCuMFI中に一部存在する ブレンステッド酸点のO-HとD₂間でH-D 交換が起 こっていると解釈している(スキーム2参照)。以上 のように,CuMFIと水素が室温で特異な相互作用を することがわかった。この水素との相互作用は固体 表面で起こる特異な化学結合という基礎研究の面か ら興味深い現象であり,この活性点を明らかにする ことができればゼオライトを利用した水素の貯蔵・ 活性化剤への応用も期待できると考えている。

4. おわりに

以上のように,ナノサイズの細孔を利用した新物 質触媒による窒素や水素分子の活性化と触媒機能制

145

御に関して,有益な情報を明らかにできた。また, 異なる空間サイズを有するMCM-41 試料やTiO2試 料に金属イオンをイオン交換し,それらの吸着特異 性についても研究を行い,興味ある現象も見出して いる。現在,さらに,X線励起による発光スペクト ル(XEOL法:X-ray excited optical luminescence) の解析を行うことによって窒素吸着サイトや水素吸 着サイトの詳細な解析の研究も進めている。

以上のような解析結果をふまえてこれらの現象の 本質となる銅イオンの状態を解明し、これらの特性 を引き出す銅イオンをはじめとした種々の金属イオ ンを種々の表面上に任意に合成・デザインできるよ うな研究へと展開していきたい。

文 献

- 最近の特集論文や参考論文を参照のこと:たとえば Chem. Soc. Rev. 2008, 37.
- M. Iwamoto, S. Yokoo, K. Sakai, S. J. Kagawa, Chem. Soc., Faraday Trans. 1981, 77, 1629; M. Iwamoto, H. Furukawa, Y. Mine, F. Uemura, S. Mikuriya, S. Kagawa, J. Chem. Soc., Chem. Commun. 1986, 1272.
- M. Iwamoto, H. Hamada, *Catal. Today*, **1991**, 10, 57.
- M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno, Y. Mine, S. Kagawa, *J. Phys. Chem.* **1991**, 95, 3727;
 M. Iwamoto, H. Yahiro, N. Mizuno, W. -X.Zhang, Y. Mine, H. Furukawa, S. Kagawa, *J. Phys. Chem.* **1992**, 96, 9360.
- 5) M. Iwamoto, H. Yahiro, Catal. Today 1994, 22, 5.
- 6) Y. Kuroda, M. Iwamoto, *Topics in Catal.* **2004**, 28, 111.
- Y. Li, W. K. Hall, J. Phys. Chem. 1990, 94, 6145;
 W. K. Hall, J. Valyon, Catal. Lett. 1992, 15, 311;
 J. Valyon, W. K. Hall, J. Phys. Chem. 1993, 97, 120; H.-J. Jang, W. K. Hall, J. L. d'Itri, J. Phys. Chem. 1996, 100, 9416.
- D. -J. Liu, H. J. Robota, Catal. Lett. 1993, 21, 291 Appl. Catal. B 1994, 4, 155.
- 9) M. Shelef, Chem. Rev. 1995, 95, 209.
- A. W. Aylor, S. C. Larsen, J. A. Reimer A. T. Bell, J. Catal. 1995, 157, 592.
- Y. Kuroda, S. Konno, K. Morimoto, Y. Yoshikawa, J. Chem. Soc., Chem. Commun. 1993, 18.
- 12) Y. Kuroda, T. Okamoto, T. Mori Y. Yoshikawa, *Chem. Lett.* 2004, 33, 1580.
- Kuroda, Y. Yoshikawa, Y. Konno, S. Hamano, H. Maeda, H. Kumashiro, R. Nagao, M. J. Phys. Chem.

1995, 99, 10621.

- Y. Kuroda, H. Maeda, Y. Yoshikawa, R. Kumashiro, M. Nagao, J. Phys. Chem. 1997, 101, 1312.
- Y. Kuroda, K. Yagi, Y. Yoshikawa, R. Kumashiro, M. Nagao, *Chem. Commun.* 1997, 2241.
- Y. Kuroda, Y. Yoshikawa, S. Emura, R. Kumashiro, M. Nagao, J. Phys. Chem. B 1999, 103, 2155.
- Y. Kuroda, R. Kumashiro, A. Itadani, Nagao, M. H. Kobayashi, *Phys. Chem. Chem. Phys.* 2001, 3, 1383.
- G. Spoto, S. Bordiga, G. Ricchiardi, D. Scarano, A. Zecchina, F. Geobaldo, J. Chem. Soc., Faraday Trans. 1995, 91, 3285.
- C. Lamberti, S. Bordiga, M. Salvalaggio, G. Spoto, A. Zecchina, F. Geobaldo, G. Vlaic, M. Bellatreccia, J. Phys. Chem. B 1997, 101, 344.
- C. Dossi, S. Recchia, A. Pozzi, A. Fusi, V. Dalsanto, G. Moretti, *Phys. Chem. Chem. Phys.* **1999**, 1, 4515.
- S. Recchia, C. Dossi, R. Psaro, A. Fusi, R. Ugo, G. Moretti, J. Phys. Chem. B 2002, 106, 13326.
- 22) G. Moretti, G. Ferraris, G. Fierro, G. Jacono, M. L. Morpurgo, S. Faticanti, M. J. Catal. 2005, 232, 476.
- V. B. Kazansky, E. A. Pidko, *Catal. Today* 2005, 110, 281.
- 24) C. Prestipino, L. Capello, F. D'Acapito, C. Lamberti, *Phys. Chem. Chem. Phys.* **2005**, 7, 1743.
- 25) A. I. Serykh, M. D. Amiridis, *Micropor. Mesopor. Mater.* 2006, 94, 320.
- 26) G. Moretti, G. Ferraris, G. Fierro, M. L. Jacono, S. Morpurgo, M. J. Faticanti, *Catal.* 2005, 232, 476;
 S. Morpurgo, G. Moretti, M. Bossa, *Phys. Chem. Chem. Phys.* 2007, 9, 417.
- 27) A. Itadani, M. Tanaka, T. Mori, M. Nagao, H. Kobayashi, Y. Kuroda, J. Phys. Chem. C 2007, 111, 12011.
- 28) A. Itadani, M. Tanaka, Y. Kuroda, M. Nagao, New J. Chem. 2007, 31, 1681; A. Itadani, M. Tanaka, H. Kobayashi, Y. Kuroda, Photon Factory Activity Reports, as the highlight, 2007, 15, 36.
- 29) A. Itadani, H. Sugiyama, M. Tanaka, T. Mori, M. Nagao, Y. Kuroda, J. Phys. Chem. C 2007, 111, 16701-16705.
- T. Mori, A. Itadani, E. Tabuchi, Y. Sogo, R. Kumashiro, M. Nagao, Y. Kuroda, *Phys. Chem. Chem. Phys.* 2008, 10, 1203.
- 31) M. Iwamoto, Y. Hoshino, Inorg. Chem. 1996, 35, 6918.
- 32) H. Yamashita, M. Matsuoka, K. Tsuji, Y. Shioya, M. Anpo, M. Che, J. Phys. Chem. 1996, 100, 397.
- 33) D. Nachtigallová, P. Nachtigall, Sierka, M. Sauer, J. Phys. Chem. Chem. Phys. 1999, 1, 2019.
- 34) P. Nachtigall, D. Nachtigallová, J. Sauer, J. Phys.

Chem. B 2000, 104, 1738.

- D. Nachtigallová, P. Nachtigall, J. Sauer, *Phys. Chem. Chem. Phys.* 2001, 3, 1552.
- 36) M. Davidová, D. Nachtigallová, R. Bulánek, P. Nachtigall, J. Phys. Chem. B 2003, 107, 2327.
- X. Solans-Monfort, V. Branchadell, M. Sodupe, C. M. Zicovich-Wilson, E. Gribov, G. Spoto, C. Busco P. Ugliengo, *J. Phys. Chem. B* 2004, 108, 8278.
- 38) A. I. Serykh, V. B. Kazansky, Phys. Chem. Chem. Phys. 2004, 6, 5250.
- G. Spoto, E. Gribov, S. Bordiga, C. Lamberti, G. Ricchiardi, D. Scarano, A. Zecchina, *Chem. Commun.* 2004, 2768.
- 40) V. B. Kazansky, E. A. Pidko, *Catal. Today* 2005, 110, 281.
- P. A. Georgiev, A. Albinati, B. Mojet, M. J. Ollivier, J. J. Eckert, Am. Chem. Soc. 2007, 129, 8086.
- 42) P. A. Georgiev, A. Albinati, J. Eckert, Chem. Phys. Lett. 2007, 449, 182.

Prominent Adsorption Feature of Copper-Ion-Exchanged Zeolites for Dinitrogen and Dihydrogen Molecules at Room Temperature

Yasushige Kuroda

Graduate School of Natural Science and Technology, Okayama University

There are few materials that can adsorb dinitrogen (N₂) and dihydrogen (H₂) molecules easily and safely around room temperature. We found that a copper-ion-exchanged MFI-type zeolite (CuMFI), which exhibits an extremely efficient adsorption feature for both N₂ and H₂ molecules even at room temperature, has been successfully prepared by the ion exchange in an aqueous solution of Cu(CH₃COO)₂ containing a component of NH₄CH₃COO. The structure of N₂ adsorbed species on Cu⁺ in MFI is determined solely by the XAFS measurements and the three-coordinated monovalent copper ions formed in MFI act as the active sites for N₂ adsorption at room temperature; N₂ molecules were adsorbed linearly on it. On the other hand, an H₂ molecule was adsorbed on CuMFI, resulting in the formation of the η^2 -type species. The results obtained are expected to provide significant information for the development of materials that function efficiently as N₂-fixation or as N₂-activation catalysts, as well as H₂ activation catalyst.

Keywords: dinitrogen and dihydrogen adsorption around 300 K, copper-ion-exchanged MFItype zeolite, end-on type adsorption of N₂, η^2 -type adsorption of H₂, XAFS