《解説》

金属配位子を骨格に導入したメソポーラス有機シリカ

脇 稔*・稲垣伸二**

*自然科学研究機構 分子科学研究所 **株式会社豊田中央研究所

メソポーラス有機シリカ (PMO) は、有機基が細孔壁内に高密度に充填した特異な骨格構造をもつ。 多様な有機基を骨格内に導入可能であり、これまでに触媒、吸着、発光、有機半導体特性などの有機基 に基づく特異な機能の発現が報告されている。今回、我々は金属イオンの配位子となるピリジン系有機 基を骨格内に導入した新規PMOを合成した。骨格中に存在するピリジン基は細孔表面に露出してお り、分子軸を細孔方向に向け規則的に配列している。この特異な細孔表面での金属イオン (Cu²⁺)の高 密度吸着や骨格有機基を配位子とした金属錯体 [Ir(ppy)₃, Ru(bpy)₂(ppy)]の形成に成功した。細孔 表面に形成した Ru 錯体は光増感剤として有効に機能し、メソ細孔内でのスムーズな物質拡散に基づく 高効率な固体光触媒系 (水からの H₂ 生成)を構築できた。ピリジン系 PMOの利用により、これまで 溶液系で発展してきた金属錯体の化学を実用的に重要となる固体系へと大きく発展できる可能性があ る。

キーワード:メソポーラス、有機シリカ、金属配位子、金属錯体、光触媒

1. はじめに

規則構造型メソポーラス物質は、 $1.5\sim30$ nmの 比較的大きな均一孔を有する多孔性物質であり、極 めて大きな比表面積を有することに加えて、細孔中 の分子やイオンが容易に拡散・移動できることか ら、高効率な触媒や吸着剤等としての応用が期待さ れている¹⁾。界面活性剤と骨格原料との協奏的自己 組織化によるメソ構造体の合成技術は大きく発展 し、多様な構造、組成および形態のメソポーラス物 質が創成された。その中でも、架橋有機シラン(R-[Si(OR')_a]_n, $n\geq 2$)を原料にして合成されるメソ ポーラス有機シリカ(Periodic Mesoporous Organosilica; PMO)²⁾は、多様な有機基(R)を骨格内に高

- * 〒444-8585 愛知県岡崎市明大寺町字西郷中38 自然科学研究機構 分子科学研究所
- E-mail: mwaki@ims.ac.jp
- **〒480-1192 愛知県長久手市横道41番地の1 株式会社豊田中央研究所
 - E-mail: inagaki@mosk.tytlabs.co.jp
- Copyright \odot 2012 Japan Zeolite Association All Rights Reserved.

密度に充填できることからその応用展開の可能性に 大きな注目がなされてきた。これまでに,骨格に導 入した有機基に基づく特異な触媒や吸着機能に加 え,高効率な発光³⁾やp型⁴⁾あるいはn型⁵⁾半導体 特性を示す PMO の合成が報告されてきた。さら に,骨格有機基が吸収した光エネルギーが細孔内の 色素に集約される光捕集アンテナ機能の発見⁶⁾やそ れを利用した光捕集型 CO₂ 還元⁷⁾や H₂ 生成⁸⁾光触 媒の構築も行われた。

PMOを含めてメソポーラス物質の細孔壁は当初 はアモルファス状のものしかなかったが、ベンゼン (Ph)を骨格に導入したPMOにおいて、初めて結 晶状の細孔壁構造の形成が実現された(Fig. 1)⁹⁾。 ベンゼン環は細孔表面に露出しており、細孔方向に 7.6 Åの周期で規則配列している。隣同士のベンゼ ン環の間隔は、通常のπ-πスタッキング距離(3.5 Å)よりも長い4.4 Åと見積もられ、相互作用は比 較的弱く、さらにベンゼン環は両端のSi-Cを軸に 回転していることがNMR解析¹⁰⁾により明らかにさ れた。よって、骨格中のベンゼン環の反応性は保持 されており、従来の有機合成的手法で溶液系と同じ ようにスルホ化⁹⁾やアミノ化¹¹⁾を行うことができ

受理日:2012年10月2日

た。その後、結晶状PMOの骨格有機基は、ビフェ ニル $(Bp)^{12}$, ナフタレン¹³⁾, ジビニルベンゼン¹⁴⁾ などに拡張された。しかし、これらの有機基は炭化 水素のみから構成されており、その反応性や化学修 飾性には限界があった。我々は、ヘテロ原子を含む ジビニルピリジンを導入した結晶状PMOの合成を 初めて報告した¹⁵⁾。さらに、金属錯体の配位子と なるフェニルピリジンを導入した結晶状PMOの合 成にも成功した¹⁶⁾。これにより、PMOの細孔表面 に,金属錯体を規則的に配列することも可能になっ てきた。金属錯体は、いまや光触媒や有機合成触媒 などの最先端の研究分野において、主役を演じる大 変重要な機能分子である。しかし、その研究は均一 (溶液) 系がほとんどであり、実用的に重要となる 不均一(固体)系の研究例は少ない。それは、従来 の固定担体であるシリカゲルやポリマーでは、表面 構造が不均一なため金属錯体の優れた機能が十分に 発揮されない場合があるためである。金属錯体の機 能を損なわずに制御された細孔表面に固定でき、更

にその配列構造も制御できれば、均一系とは異なる 金属錯体の機能の発現が期待される。

ここでは、ジビニルピリジンとフェニルピリジン を骨格に導入したPMOの合成と、その細孔表面で の金属イオンの吸着あるいは金属錯体形成、そして 固定された金属錯体の光触媒機能について紹介し、 金属錯体の新しい固定担体としてのPMOの可能性 について議論する。

Fig. 1. Synthesis and structural model of benzene-PMO.

ベンゼンとピリジンは互いに類似した分子構造を もつ芳香族化合物であり、構造上の相違点は窒素原 子の有無のみである。Ph-およびBp-PMOの合成の 報告以降、ピリジン基を導入したPMOの合成が検 討されたが達成されてこなかった。その最大の理由 の一つが、PMO前駆体となるピリジン架橋型シラ ン合成の困難さにある。ピリジン環へのシリル基の 導入が必要となるが、これまで一般的に利用されて きた芳香族化合物のシリル化法は、いずれもピリジ ン基質に対して有効ではなく、ピリジン架橋有機シ ランを得ることはできなかった。一方で、アルキ ル. アミド. チオエーテルなどのスペーサーを間に 挟むことで、ピリジン基を含む有機シラン化合物の 合成がなされたが, 有機部が大きくなり鋳型界面活 性剤との相互作用効率が低下するため、 有機シラン 原料100%からのPMOの合成は困難であった。ま た, TEOSとの混合系では有機基の配列構造の形成 は見られず、アモルファスの細孔壁をもつPMOし か合成できなかった。したがって、ピリジン架橋有 機シランの分子設計には、ピリジン環への直接のシ リル化あるいは剛直なスペーサーの使用が必要と考 えた。様々な反応を検討した結果, ロジウム (Rh) 触媒を用いたジエチニルピリジンへのヒドロシリル 化反応により、ジビニルピリジンで架橋された有機 基の架橋有機シランの合成が可能となった。これを 原料に用いて、カチオン性界面活性剤の存在下でア ルカリ条件における加水分解と重縮合反応を行うこ とで、ピリジン架橋基を有する PMO (v-Py-PMO) の合成に成功した (Scheme 1)。

v-Py-PMOのX線回折パターンには、規則的なメ ソ構造を示す低角のピーク(*d*=4.7 nm)に加え、 有機基の規則配列構造を示す広角側のピーク (*d*=1.16 nm)が観察された(Fig. 2a)。窒素吸着等 温線はメソ細孔の存在を示すIV型を示し、そこか ら細孔直径と比表面積がそれぞれ4.1 nm (DFT)と 803 m²/g と求まった(Fig. 2b)。さらに、TEM 像

Scheme 1. Synthesis of pyridine-bridged precursor and divinylpyridine (v-Py)-PMO.

Fig. 2. (a) XRD pattern, (b) nitrogen adsorption/desorption isotherm, and (c and d) TEM images of v-Py-PMO.

には、一次元の細孔構造と細孔壁内の有機基の配列 構造に起因する1.16 nmの周期構造が明瞭に観察さ れた(Fig. 2c, d)。これらの結果より、v-Py-PMO は、規則的なメソ細孔構造とピリジン環が規則配列 した結晶状の細孔壁構造の両方を有することが確認 された。これは、ヘテロ原子を含む結晶状PMOの 初めての例となった。

v-Py-PMOの骨格内には3.31 mmol/gの多量のピ リジン環が組み込まれている。これは従来の表面修 飾によるピリジン基の導入量 (~2.1 mmol/g) に比 べてかなり多い量である。v-Py-PMOの細孔壁はピ リジン環の三層構造になっているが、ほとんどのピ リジン基は細孔からのアクセスが可能であった。v-Py-PMOは、λ_{max}=390 nm に v-Py 由来の蛍光ピー クを示すが、酸(トリフルオロ酢酸)の蒸気に曝す とピリジニウム (v-PyH⁺) に由来する蛍光ピーク (*λ*_{max}=470 nm) に大きくシフトした (Fig. 3a)。更 に、塩基(NH₃)の蒸気に曝すとピークは元の位置 に戻った。PMO骨格中のほぼすべてのv-Py基のプ ロトン化-脱プロトン化が可逆的に進行したことを 示している。また、v-Py-PMOの銅イオン (Cu²⁺) に対する高い吸着能も明らかになった (Fig. 3b, c)。 v-Py-PMOを Cu(BF₄)₂ 溶液に分散させたところ, 吸着量は最大で2.4 mmol/gとなった。これは, PMO骨格中のv-Py基の71%に相当し、表面に露出 した v-Py 基のほとんどが、Cu²⁺ の吸着サイトに

Fig. 3. (a) UV/vis diffuse reflectance and fluorescence (λ_{ex}=320 nm) spectra of v-Py-PMO; pristine v-Py-PMO (black), after exposure to trifluoroacetic acid (gray) and successive NH₃ (dark gray). (b) UV/vis diffuse reflectance spectra of v-Py-PMO before (black) and after treatment of Cu (BF₄)₂ (gray). (c) Changes in the amount of Cu²⁺ adsorbed for v-Py-PMO (●) and v-Ph-PMO (○).

なっていることを示す。対照的に, 窒素原子を含ま ない類似構造のジビニルベンゼン (v-Ph)-PMO で は, Cu²⁺ の吸着はほとんど見られなかった (Fig. 3c)。

3. フェニルピリジン-PMO¹⁶⁾

フェニルピリジン (PPy) は、イリジウム (Ir) や ルテニウム (Ru) などの遷移金属に対してシクロメ タル化反応により炭素-金属結合を含む安定な錯体 を与える。これらのシクロメタル化錯体は、中心金 属の重原子効果による励起三重項状態からの効率的 な発光特性や、光照射によって誘起されるレドック ス特性を利用した光増感色素としての応用が検討さ れている。PMO 骨格への PPy 基の導入と、それら を配位子とした細孔表面での金属錯体の形成によ り、均一系とは異なる発光特性や再利用が容易な固 体の錯体光触媒系の構築が期待される。

PPyの架橋有機シランの合成は、Rh触媒による シリル化法が有効であり、対応するハロゲン体から 誘導することができた (Scheme 2)。この架橋有機 シランは塩基性条件下において速やかに加水分解さ れ、カチオン性界面活性剤との協奏的自己組織化に

Scheme 2. Synthesis of phenylpyridine (PPy)-PMO and formation of metal complexes on pore surface.

よりPMO化が達成された。このPPy-PMOは、規 則的なメソ構造に加え、PPy基が規則配列した結晶 状の細孔壁構造を有することが確認された。PPyの 配列構造は、Ph-PMOやv-Py-PMOと同様で、有機 基の分子軸が細孔方向に配向した状態で表面に露出 した構造をしていた。

次に、PPy基が露出した細孔表面で、IrとRu錯 体の形成を行った。PPy-PMO粉末を炭酸カリウム と金属錯体前駆体([Ir(ppy)₂ Cl]₂, Ru(bpy)₂ Cl₂・ 2H₂O)を含む溶媒中で加熱撹拌(120℃)すること で、PMO 骨格の PPy 基を配位子の一つとした Ir(ppy)₃ と Ru(bpy)₂(ppy) 錯体の形成に成功し た。PPy基は骨格に固定されているが、Si-Cを軸 にした回転の自由度を有するため、比較的容易にシ クロメタル化が進行したと考えられる。シクロメタ ル化により、PPy-PMOの細孔容積は67~79%に減 少しており、金属錯体が細孔内に形成されたことを 示唆している。

Ir-PPy-PMO の UV/vis 拡散反射スペクトルは、 PPy 基の π - π * 遷移に由来する吸収 (λ_{max} =300 nm) に加えて、Ir(ppy)₃ 錯体に特徴的な電荷移動 (MLCT: Metal to Ligand Charge Transfer) 遷移に 由来する吸収 (λ_{max} =380, 480 nm)を示した (Fig. 4a)。これら二種類の吸収バンド (300 nm と 380 nm)を別々に励起したところ、いずれも Ir(ppy)₃ 錯体からの緑色発光 (λ_{max} =560 nm)が観察された が、発光強度は 300 nm 励起の方が圧倒的に強かっ た。これは、Ir(ppy)₃ 錯体が PMO 骨格の PPy 基に 対して 2 mol% しか形成されておらず励起光 (380 nm)の吸収率が低いのに対し、高密度に存在する PPy 基は 300 nm の励起光を効率的に吸収し、さら にその励起エネルギーを近傍の Ir(ppy)₃ 錯体に集 約したためである。つまり、PPy-PMOが光捕集ア

Fig. 4. (a) Photoluminescence spectra of Ir-PPy-PMO excited at 300 and 380 nm and of PPy-PMO excited at 300 nm. (b) Schematic illustration for light-harvesting of Ir-PPy-PMO.

Fig. 5. (a) UV/vis diffuse reflectance spectra of Ru-PPy-PMO (black) and PPy-PMO (gray). (b and c) Computer graphic images of Ru-PPy-PMO.

ンテナの役割を果たし、光エネルギーを集約して、 Ir(ppy)3 錯体の発光を増強したことを意味する (Fig.4b)。このような機能の発現は均一系では難し く、有機基を高密度に配列した構造を有するPMO ならではの機能と言える。

 一方, Ru-PPy-PMOのUV/vis拡散反射スペクト ルには, MLCTに由来する四つの吸収ピーク(372, 416, 497, 550 nm)が観察された(Fig. 5a)。これは, PPy基が一つ配位した Ru(bpy)₂(ppy) 錯体に特徴 的な吸収バンドであり,幅広い可視光を吸収可能で あることを示す。Ru(bpy)₂(ppy) 錯体の導入量は,

Fig. 6. Hydrogen evolution from Ru-PPy-PMO in the presence of EDTA, MVio, and colloidal Pt under irradiation of visible light (>385 nm).

骨格の PPy に対しておよそ 10 mol%と Ir 錯体の場 合よりも多く,これは細孔壁の PPy 基が四層であ ることを考慮すると,最表面の五個の PPy 基に対 して一個の割合で Ru(bpy)₂(ppy) 錯体が結合して いることを示す。これを CG イメージで表すと Fig. 5b, c のようになり,細孔表面にかなり高密度で Ru(bpy)₂(ppy) 錯体が形成されていることが分か る。また,PMO の細孔を断面から見ると, Ru(bpy)₂(ppy) 錯体は細孔表面からあまり突出し ておらず,細孔内での物質拡散をほとんど阻害しな いことが分かる。

Ru(bpy)3 錯体は典型的な光増感剤であり、メチ ルビオロゲン (MVio), 白金コロイド (Pt), 犠牲 試薬(EDTA)を含む水溶液中で可視光を照射する と、水を分解して H2 を生成する光触媒作用を発現 することが知られている。しかし、均一系のため、 触媒の回収・再利用が困難であること、長時間光照 射すると Ru(bpy)3 錯体が次第に分解・不活性化 するという問題があった。我々は、固体であるRu-PPy-PMOを均一系の Ru(bpy)3 錯体の代りに光増 感剤として利用することを検討した。Ru-PPy-PMO粉末を上記の均一光触媒系と同じ水溶液に分 散させ,可視光 (>385 nm) を照射したところ,多 量の H₂ の生成が確認された (Fig. 6)。つまり, PMOの細孔表面に形成した Ru(bpy)₂(ppy) 錯体 が、光増感剤として十分に機能することが確認され た。さらに、H2は20時間以上も直線的に生成して おり、反応効率がほとんど低下していない。これ は、Ru(bpy)₂(ppy) 錯体の分解による不活性化が 起こりにくいことを示唆している。さらに、従来の

多孔体を利用した触媒反応では、細孔内での物質拡 散が律速になり、時間とともに反応効率が低下する 場合が多いが⁸⁾、本系では反応効率の低下は見られ ず、MVioやEDTAなどの分子がすみやかに細孔内 を拡散していることが推察できた。

金属錯体を細孔壁に直接固定する本方法は、従来 のグラフト法よりも耐久性や細孔内の物質拡散の点 で優れていると考える。さらに、金属錯体の配位子 の一つはPMO骨格に組み込まれており、骨格から の電子的、立体的な影響を大きく受けていると考え る。PMO骨格に固定した金属錯体は、均一系とは 異なる特性を示す可能性があり、そういう観点での 研究も今後進めたいと考える。

4. おわりに

ジビニルピリジンとフェニルピリジンを骨格導入 したPMOの合成と、その細孔表面での金属イオン の吸着と金属錯体形成、さらに固定した金属錯体の 特異な発光特性と固体光触媒特性について紹介し た。最近では、ビピリジンを導入したPMOの合成 にも成功している。ビピリジンは、もっとも幅広く 利用されている金属錯体の配位子の一つであり、 PMO表面で多様な金属錯体の形成が可能となった。 今後は、光触媒だけでなく、有機合成触媒へも展開 する予定である。PMOの利用により、これまで均 一系を中心に発展してきた金属錯体の化学を固体系 へと大きく発展できると考える。

文 献

- T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, *Bull. Chem. Soc. Jpn.*, **1990** (63), 988–992; C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. C. Beck, *Nature*, **1992** (359), 710–712; S. Inagaki, Y. Fukushima, K. Kuroda, *J. Chem. Soc., Chem. Commun.*, **1993** 680–682.
- S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc., 1999 (121), 9611–9614; T. Asefa, M. J. MacLachlan, N. Coombs, G. A. Ozin, Nature, 1999 (402), 867–871; B. J. Melde, B. T. Holland, C. F. Blanford, A. Stein, Chem. Mater., 1999 (11), 3302–3308.
- T. Tani, N. Mizoshita, S. Inagaki, J. Mater. Chem., 2009 (19), 4451-4456.
- N. Mizoshita, M. Ikai, T. Tani, S. Inagaki, J. Am. Chem. Soc., 2009 (131), 14225–14227.
- N. Mizoshita, T. Tani, H. Shinokubo, S. Inagaki, Angew. Chem. Int. Ed., 2012(51), 1156–1160.
- S. Inagaki, O. Ohtani, Y. Goto, K. Okamoto, M. Ikai, K. Yamanaka, T. Tani, T. Okada, *Angew. Chem. Int. Ed.*,

2009(48), 4042-4046.

- H. Takeda, M. Ohashi, T. Tani, O. Ishitani, S. Inagaki, Inorg. Chem., 2010(49), 4554–4559.
- M. Ohashi, M. Aoki, K. Yamanaka, K. Nakajima, T. Ohsuna, T. Tani, S. Inagaki, *Chem. Eur. J.*, 2009(15), 13041-13046.
- S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki, *Nature*, 2002 (416), 304–307.
- S. Bracco, A. Comotti, P. Valsesia, B. F. Chmelka, P. Sozzani, *Chem. Commun.*, 2008, 4798–4800; A. Comotti, S. Bracco, P. Valsesia, M. Beretta, P. Sozzani, *Angew. Chem. Int. Ed.*, 2010(49), 1760–1764.
- 11) M. Ohashi, M. P. Kapoor, S. Inagaki, Chem. Commun.,

2008, 841-843.

- 12) M. P. Kappor, Q. Yang, S. Inagaki, J. Am. Chem. Soc., 2002(124), 15176–15177.
- N. Mizoshita, Y. Goto, M. P. Kapoor, T. Shimada, T. Tani,
 S. Inagaki, *Chem. Eur. J.*, **2009**(15), 219–226.
- A. Sayari, W. Wang, J. Am. Chem. Soc., 2005(127), 12194-12195; M. Cornelius, F. Hoffmann, M. Fröba, Chem. Mater., 2005(17), 6674-6678.
- 15) M. Waki, N. Mizoshita, T. Ohsuna, T. Tani, S. Inagaki, *Chem. Commun.*, **2010**(46), 8163–8165.
- 16) M. Waki, N. Mizoshita, T. Tani, S. Inagaki, Angew. Chem. Int. Ed., 2011 (50), 11667–11671.

Periodic Mesoporous Organosilicas with Metal Ligands within the Framework

Minoru Waki* and Shinji Inagaki**

*Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan **Toyota Central R & D Labs., Inc., Nagakute, Aichi 480-1192, Japan

Periodic mesoporous organosilica (PMO) has a unique framework structure in which organic groups are covalently bonded to silica moieties and homogeneously distributed with a high density. So far, a variety of PMOs have been reported with unique catalysis, adsorption, luminescence, and semiconductivity in their frameworks. Recently, we reported new PMOs with pyridine-containing organic groups showing binding properties of metal ions. Pyridine groups are exposed on the pore surface and arranged in a parallel to the channel direction. We succeeded in the high density adsorption of metal ion (Cu^{2+}) and formation of metal complexes $[Ir(ppy)_3, Ru(bpy)_2 (ppy)]$ on the unique PMO pore surface. The Ru complex formed on the pore surface functions as a photo-sensitizer for an efficient solid state photocatalysis of H₂ evolution from water due to the smooth mass transfer in the large mesopores. The pyridine-containing PMOs have a great potential to progress the chemistry on metal complexes from solution to solid-state systems.

Key words: mesoporous, organosilica, metal ligand, metal complex, photocatalysis

Copyright © 2012 Japan Zeolite Association All Rights Reserved.