《解説》

中国におけるゼオライトの合成 および構造の研究

吉林大学	龐	文 琴	(Pang WenQin)
	徐	如 人	(Xu RuRen)
北京大学	林	炳 雄	(Lin BinXiong)

1. 概 説

1.1 まえがき

中国で 60 年代から研究され, あるいは工業的に 応用されている主なゼオライトには¹⁾, NaY, REY, NaA, NaX, NaD(mordenite), ZSM-5, ZSM-11, Silicalite, U.S.Y. などがある。

1.2 応用される背景

- A. 石油工業: Catalytic cracking, Hydrocracking。
- B. 石炭の化学工業: ガソリンの合成, メタノー ルの転化。
- C. 石油化学工業における有機触媒反応 (organic catalysis in petrochemical industry)。
- D. 分離と浄化プロセスで用いられる吸着剤。
- E. 洗浄剤。例えば、ゼオライト NaAの利用など。
- F. 環境保全。

2. 新しいゼオライトの合成と開発

- A. 高シリカゼオライト。例えば、ZSM-family、
 Silicalite、L及びΩゼオライトなど。
- B. ヘテロ原子ゼオライト (Hetro-Atom Molecular Sieve)。例えば、M-ZSM-5、M-L、M-Ω(M:Si,Al以外の原子)。
- C. 燐酸塩ゼオライト (phosphate zeolite)。例 えば、AlPO₄-n、SAPO-n、MAPO-n(M= Mg, Zn, Fe, Co, Ni…)。

従って、中国には合成、構造、触媒、吸着、拡散 などを含むゼオライトの研究を進める人が多い。こ れらの研究を行う所がたくさんあり、会社、研究院 (所)、大学が含まれる。例えば、北京石油化学工業 科学研究院、撫順石油化学工業研究院と中国科学院 に属する研究所などの研究機関と吉林大学、北京大 学、复旦大学、南開大学、南京大学などの大学にお いて、研究は行われている。

2.1 ZSM系列

ここで主に ZSM-5 について紹介をする。 TPA は値段が高いので, 我が国では TPA の代りに ZSM -5を合成, 生産する他の方法を研究している。主 に次の方法がある。有機アミン類:例えば, Ethylene diamine ($H_2N-CH_2-CH_2-NH_2$), Primary amine (RNH_2 ; $R=C_1 \sim C_4$)など。アルコール類: 例えば, EtOH。 アミノアルコール類:例えば, $H_2N-CH_2-CH_2-OH$ 。NaOH直接法:南開大学は, NaOH-Al₂O₃-SiO₂-H₂O²⁾システムで 150~180 ℃で合成する方法を開発し,現在では工業生産の規 模に達している。

2.1.1 NaOH直接法

この方面の基礎研究は次の3つの問題に関連して 行われている。

A. 直接法とTPAなどの方法で合成したZSM-5の性能の比較実験が行われた。例えば、物理化学 性能,吸着性能,酸性とC.I.(constraint index), methanolの転化反応、ヘキサンの転化反応を研究し、 外国でTPA法によって得られる生成物と似ている 上に、ある面では長所を示した。

B. 直接法によって得られる生成物,および, これを高温で水蒸気処理した後の構造が研究された。

C. テンプレート剤の効果: TPA⁺のテンプレー トとしての効果については, E. Drouane と Z. Gabelicaにより次のように説明されている。すなわ ち, Fig. 1 に示した ZSM-5 の孔路交差点に TPA⁺ 中のNが位置し,四方に延びたプロピル基にそって 孔路が形成され,ZSM-5 ゼオライトの結晶が生成 する。これに対して,他の有機化合物(RNH₂,ROH, NaOH など)からも ZSM-5が生成する理由として, 吉林大学の徐如人らは,Na⁺ によるカチオン四面体 テンプレートモデルを提案している⁸⁾。Fig. 2 に示し たように,Na⁺ カチオンにアミン,アルコールある

Fig. 1 Channel Structure of ZSM-5

Fig. 2 Positive charge tetrahedron templating model

いは水が4分子配位した化学種が生成する。との中 のNa⁺がFig.1に示した交差点に位置し,四方に延 びた配位子に沿って孔路が形成される。これは,¹³C, ²⁸Naの固体 MASNMR および DTA-TG により確 められている。

2.2 ヘテロ原子分子篩 (Hetro Atom Molecular Sieve)

 A. ZSM-5型: 合成した M-ZSM-5は形状選 択触媒と遷移金属元素がもつヘテロポリ酸触媒の特 徴がある。吉林大学では、M=B, Ga, Fe, Cr,
 V, Sn, Ti, Zr など、多種のヘテロ原子ゼオライ トが合成できた(合成した Zeolite はAl を含まない か、または微量の Al が含まれている)。

B. 合成方法: B-ZSM-5を例とする。以下の
 5つのシステムから水熱合成により140~200℃で

24~126h結晶化させると, B-ZSM-5が得られた^{4~6)}。

- (1) $H_{3}BO_{3}-Si(OC_{2}H_{5})_{4}-(TPA)_{2}O-H_{2}O$
- (2) $H_{3}BO_{3}$ Si $(OC_{2}H_{5})_{4}$ TPABr $(NH_{4})_{2}O$ $H_{2}O$
- (3) $H_3BO_3 Na_2O SiO_2 HMDA H_2O$
- (4) $H_3BO_3 Na_2O SiO_2 ROH H_2O$

$$(R = C_2 H_5, i - C_3 H_5)$$

(5) H_3BO_3 - Na_2O - SiO_2 - H_2O

C. 性能:吸着性を中心として行った。一連の実
 験⁷⁾から以下の結果が得られた。

(1) M核が電子で満たされた元素或いは電気陰性
 度の比較的小さい元素(M)のM-ZSM-5は親水性
 が大きい。

(2) 原子半径の小さい元素(M)のM-ZSM-5 は
 無極性炭化水素化合物(non-polar hydrocarbon compound)に対して吸着性が高い。

(3) 4価のカチオン(M⁴⁺)とSi⁴⁺から形成され た中性ゼオライト骨格は良い形状選択性と強い疎水 性を持つ。

(4) M-ZSM-5はAl-ZSM-5よりもp-キシレンに対する吸着性が高い。

D. M-ZSM-5の構造: ヘテロ原子(M) ゼオラ イトに対して最も重要な問題は, Mが骨格構造に侵 入しているか, またはどのような場所に存在してい るかを確認することである。

(1) 粉末X線回折法。B-ZSM-5, V^{5+, 4+, 3+} - ZSM-5, Ti-ZSM-5等を例として示す。

 B-ZSM-5。粉末X線回折法でB-ZSM-5の結晶構造を調べた⁸⁾。実験の結果からB-ZSM--5はZSM-5類似の構造をもつことがわかった。 構造のパラメーターはTable1に表わす。

- M-ZSM-5の格子定数
 - 1) 共存原子の影響をTable 2 に示す。
 - ii) 酸化状態の影響(V-ZSM-5)をTable 3 に示す。
 - Ⅲ)M-ZSM-5骨格構造の原子比(nTi/(nTi

Fable 1. Structura	l parameters	of B-ZSM-5,	, Al-ZSM-5,	, Silicalite
--------------------	--------------	-------------	-------------	--------------

Zeolite $\frac{SiO_2}{X_2O_3}$	Space group	Paramet a(Å)	ters of the b(Å)	unit cell c(Å)
B901 28	D _{2h} ¹⁶ - Pnma	19.983	19.773	13.303
ZSM-5(4)*46	D ¹⁶ _{2h} - Pnma	20.16	19.97	13.44
Silicalite (5)*	C_{2v}^{9} - Pn2 ₁ a	20.06	19.80	13.36

X : B or Al ()* denotes ref. No.

M-ZSM-5	unit c $a(\text{\AA})$	ell param b(Å)	eters c (Å)	unit cell volume $V(\text{\AA}^3)$
B	19.983	19.773	13.303	5256.3
Ga	20.18	20.04	13.44	5455.5

Table 2. Effect of the kind of hetero atoms on the structural parameters of M-ZSM-5

Table 3. Effect of the oxidation state of vanadium on thestructural parameters of V-ZSM-5

V-ZSM-5	unit c	ell param	unit cell volume	
	<i>a</i> (Å)	<i>b</i> (Å)	c (Å)	$V(\tilde{A}^{*})$
V(Ⅲ)	20.22	20.09	13.50	5484.0
$V(\mathbf{N})$	20.18	20.05	13.46	5446.0
V(V)	20.13	19.98	13.45	5409.6

Table 4. Effect of Ti content on the structural parametersof Ti-ZSM-5

Ti-ZSM-5	nTi/(nTi+nSi)	unit c a (Å)	ell paran b(Å)	neters c(Å)	unit cell volume $V(\text{\AA}^3)$
No. 1	0.040	19.925	20.024	13.529	5397.8
No. 2	0.023	20.107	19.912	13.444	5382.6
No. 3	0.009	20.067	19.876	13.429	5352.6
No. 4	0.000	20.06	19.80	13.36	5306.4

Table 5. Molar ratio of SiO_2 to TiO_2 in various Ti-ZSM-5 samples

No.	Sample	SiO ₂ /TiO ₂	No.	Sample	SiO ₂ / TiO ₂
0 1	Silicalite Ti-ZSM-5	93.0	3 4	Ti-ZSM-5 Ti-ZSM-5	43.3 24.0
2	Ti-ZSM-5	66.4	NJ	TiO_2 – SiO_2 – Gel	18.0

+nSi))の影響(Ti-ZSM-5)をTable4に示す。

(2)他の面の総合研究。Ti-ZSM-5⁹⁾を例とし て示す。

IR, Laser Raman, ESR, ESCA及びEPMA (Electronic probe)など spectroscopic method を用いて研究し, Ti-ZSM-5において, Tiの四 面体構造が Ti-ZSM-5の骨格構造内に存在する ことが確認された。

① IRとLaser Raman Spectra を用いる方法 で, Table 5 に示す組成のTi-ZSM-5を研究した。 その結果をFig. 3 と 4 に示す。

② Ti-ZSM-5骨格構造のTi³⁺ESR spectra。

先ず⁶⁰Coを用いて放射線をTi-ZSM-5 粉末に照 射して, Ti⁴⁺をTi⁸⁺へと還元した後, Ti⁸⁺のESR スペクトルを観測した(Table 6)。

 ③ Ti-ZSM-5のXPSの測定。結果をFig.5, 6およびTable7に示す。

Scanning electron probe micrograph の実験 によって, Ti が骨格構造に侵入していることが判 明した。

2.3 燐酸塩型ゼオライト

吉林大学,他の研究所および大学で,SAPO-n が合成されている。例えば,1.14 Et₃N・5 SiO₂・ 4.5 Al₂O₃・5 P₂O₅・2.6 H₂Oが合成された。SiAlPO₄ -n ゼオライトは熱安定性がよい(>1300 °C)。それに

Fig. 3 The IR-spectra of Ti-ZSM-5

Table 6. ESR spectra of Ti⁺³ in the framework of Ti-ZSM-5

Sample	SiO /TiO	Data for	the signa	Environment	
Sample	$510_2 / 110_2$	g1	g ₂	g 3	Environment
Ti-ZSM-5	24	1.991	1.976	1.919	
Ti-ZSM-5	43.3	1.989	1.975	1.920	
$TiO_2 - SiO_2$	30	1.995	1.975	1.915	distorted TiO ₄
glass					tetrahedron

Fig. 5 The XPS pattern of Ti_{2P} in the framework of Ti-ZSM-5

Fig. 6 The XPS pattern of Si_{2P} and O_{1S} in the framework of Ti-ZSM-5

NT	C 1		Electron binding energy (e.v.)				
No.	Sample	$510_2 / 110_2$	$Ti(2P^{1/2})$	$Ti(2P^{3/2})$	Si(2P)	O(1S)	
0	Silicalite				104.0	533.5	
1	Ti-ZSM-5	93.0	465.3	459.4	104.0	533.3	
2	Ti-ZSM-5	66.4	465.3	459.4	104.0	533.3	
3	Ti-ZSM-5	43.3	465.2	459.2	104.0	533.3	
4	Ti-ZSM-5	24.0	464.5	458.9	103.9	533.2	
NJ	$TiO_2 - SiO_2$	18.0	465.3	459.5	103.5	533.1	
	gel						
*	TiO ₂	· · · · · · · · · · · · · · · · · · ·				530.7	

Table 7. XPS data of Ti-ZSM-5

イオン交換性と酸性もある。吉林大学では, MAPO -n (M=Fe, Co, Ni, Zn, Cr, Mn, Cu, Mg …) が合成された。最近, 九種類のGaPO-nも合成さ れている。

3. ゼオライトの結晶化メカニズムに関する研究

吉林大学でのゼオライトの生成機構に関する研究 では、主に次の5つが行われている^{10~13)}。

- 1. 核生成前期液相中での縮合重合反応メカニズ ム
- 2. 核生成の動力学
- 3. 結晶成長の動力学
- 4. 結晶の転化の問題
- 5. 結晶化での templating molecular (あるいは イオン)の役割

以上のことについて,吉林大学と他の大学,研究 所では次のような系統的研究がなされた。

(1) TMS-GC法で核生成とその前期における液
 相中でのポリシリケートとAl(OH)₄ の重合反応が
 研究された。

(2) 抽出法と²⁷Al-, ²⁹Si-, ¹⁸C-NMR, IR等の 方法を併用することにより,核生成前期における液 相中の縮合重合反応および organic templating molecule の役割を研究した。

(3)²⁸Na-NMR法でNaY核生成反応の動力学を 研究した。

(4) 高分解能電子回折法を用いて,結晶化プロセ スでのコロイダル結晶核の生成を研究した。

(5) 自発核生成,不自発核生成時の結晶成長の動 力学研究がなされた。

(6) ゼオライト間の転化機構について研究している。例えば、NaA→ NaX + NaHS → NaHS、
 NaY→ NaP, Silicalite 2 などである。

4. ゼオライト構造の研究

北京大学の林炳雄らは¹⁴⁾(北京大学,吉林大学, 南京煉油研究所,上海交通大学など共同研究)1981 年からX線回折法を利用して Zeolite の結晶構造を 研究している。

4.1 中国では1981年からX線回折法を利用し て、Rietveld system構造修正法を用いて詳しく ZSM-5の構造を研究し、外国の研究よりも正確に その格子定数を測定した。種々の方法で合成された ZSM-5の構造を常温で測定した。いずれのZSM -5も構造の特徴である真直な孔路とこれに直交す るジグザグの孔路から構成されている。しかし、形 状選択性に関係する2種の孔路の口径およびジグザ グ形孔路の屈曲角はTable8に示したように、合成 条件によって異なることが判明した。

A. ZSM-5は類似の結晶構造を有してはいるが、 細孔の孔径とジグザグ形孔路の屈曲角が異なる一連 の化合物を包含している。

B. X線回折法とSEMを併用してZSM-5結晶の成長を観察した結果, bc 面上に一層一層成長していくことがわかった。

4.2 高温水蒸気処理を行った ZSM-5構造の変 化を研究した。500 ℃での水蒸気処理後の ZSM-5の粉末 X線回折の結果は、まだ ZSM-5の構造が保 持されていることを示している。しかし、結晶の対 称性 (Symmetry) が常温での D_{2h}^{16} から C_{2h}^{5} に変化し、 それに形状選択性能に関する構造 paramater であ る直孔路の開口径が小さく丸い形になり、ジグザグ 形の孔路の屈曲角が小さくなることがわかった。

4.3 高温におけるH-ZSM-5構造の測定

500℃で粉末X線回折法でH-ZSM-5 構造を測 定した。関連する構造パラメーターは高温でも低温 でもほとんど変らない(Table 9)。

No. templating molecule	1	in parallel (010)	channel	parallel with (100) channel		
	opening diameter (Å)	angle (°)	opening diameter (Å)	angle (°)		
• 1	$H_2N-CH_2-CH_2-NH_2$	major 5.80 minor 4.80	180 180	5.30	156	
2	$Na(H_2O)^+$	major 5.80 minor 4.78	180 180	5.30	156	
3	TPA ⁺	5.30	180	5.30	152	

Table 8. Relation between broken angle of zigzag channeland preparation method

Table 9. The structure of HZSM-5

sample treated with	parallel (010) ch opening diameter	annel angle	parallel (100) opening diameter) channel broken angle
500℃-cooling-R.T. (treated with steam)	5.20 (Å)	-180°	5.20 (Å)	147°
heated to $500\mathrm{C}$	5.30 (Å)	-180°	5.26 (Å)	148°

Table 10. Structural parameters of B-ZSM-5 (B901), ZSM-5 and Silicalite

Sample	SiO_2 / X_2O_3	space group —	param	parameter of the unit			T-T
			<i>a</i> (Å)	b (Å)	c (Å)	(Å)	(Å)
B-ZSM-5	28	D _{2h} ¹⁶ – Pnma	19.983	19.773	13.303	1.58	3.08
ZSM-5	46	D_{2h}^{16} – Pnma	20.16	19.97	13.44	1.62	3.13
silicalite-1		C_{2v}^9 – Pn 2 ₁ a	20.16	19.80	13.36		

4.4 B-ZSM-5の構造を調べた(Table 10)。

4.5 AlPO₄-5, SiAlPO₄-5などの構造を研究 し,興味のある結果が得られている。

文 献

- 万 邦和,梁 娟等,"沸石分子篩",科学出版 社(1978)
- 2) 李 赫喧等,高等学校化学学扱,2(4),517 (1981)
- Song TianYou, Xu RuRen, Proceedings of the Seventh International Zeolite Conference Tokyo, Japan August 17-22 (1986)
- 4) 龐 文琴,景 晓燕等,高等学校化学学扱,3(4), 577(1982)
- 5) 龐 文琴, 李 国文, 化学学扱, 42, 1200(1984)
- 6) 龐 文琴, 袤 式倫, 孟 宪平, 高等学校化学学扱, 5(5), 619(1984)
- Xu RuRen, Pang WenQin, Zeolites, Synthesis, Structure, Technology and Application (Proc. International Symp., Portorose, Yugoslavia,

September 3~8, 1984

- 8) 龐 文琴,李 国文,李 旺荣,張 婉静,林 炳 雄,高等学校化学学扱,5(3),375(1984)
- 9) Pang Wen-Qin, Qiu Shi-Lun, ACTA CHIMICA SINICA No 2, 96 (1985)
- 10)徐 如人,張 連民,高等学校化学学扱,2(4), 520(1981)
- 12) Xu RuRen, Proceedings of The Fifth International Conference on Zeolites, Naples Italy, 2-6 June 312 (1980)
- 13)馮 守华,李 守貴,徐 如人,高等学校化学学扱, 6(10),855(1985)
- 14)于 勤,李 旺荣,張 婉静,魏 国祥,叶 彗 娟,林 炳雄,石油学扱,3(3),83(1982)
- 15) 張婉静, 于動,魏国祥, 王淑菊, 刘振义, 林炳雄, 石油学扱, 1(1), 41(1985)
- 16) 刘 振义,張 婉静,林 炳雄,于 勤,魏 国
 祥,朱 佛,燃料化学学扱,13(2),106(1985)
- 17) 李 旺荣,林 炳雄等,石油学扱,3,105(1983)