《解 説》

Cu-AFX ゼオライトトでのアンモニア脱硝メカニズム

窪田博愛・鳥屋尾 降・清水研一

NH:を還元剤とするNOxの選択還元反応 (NH:-SCR) が大型ディーゼル車用尿素脱硝システムのコア 技術として実用化されている。触媒化学分野における近年のホットトピックスは、Cu-CHA等の小細 孔ゼオライトにCuをイオン交換させた触媒の高いNH:-SCR性能や高耐久性を理解するための基礎研 究である。本稿では小細孔ゼオライト系 Cu 触媒の例として Cu イオン交換 AFX ゼオライト (Cu-AFX) を用いて、NH:-SCRの反応機構を各種 in situ分光法によって研究した成果を述べる。本系は、Cu²⁺に 配位したNH,がNOと反応して、Cu²+のCu⁺への還元に伴うN,とH⁺の生成(還元素過程)、Cu⁺とO,と H^+ からの Cu^{2+} と水の生成 (再酸化素過程) の2 段階の素過程を繰り返して進行する。活性種はCuイオ ンであり、ゼオライトの役割は Cu^{2+}/Cu^{+} イオン、および、中間生成物であるプロトンのイオン交換サ イトを提供することであると結論した。

キーワード: NOx 選択還元, ディーゼル脱硝, 反応機構, 銅イオン交換ゼオライト

1. はじめに

Cu-CHA を触媒に用いたNH3を還元剤とするNOx の選択還元反応 (NH3-SCR) が大型ディーゼル車の 脱硝システムに搭載されている¹⁾。NH₃-SCR用の Cuゼオライト触媒の高いNH3-SCR性能を理解する ためには、分子レベルでの反応機構の知見が必須で ある。Cuゼオライト上でのNH3-SCR機構の研究は 40年以上の歴史^{2,3)}があるが、最近のトピックスは Cu-CHA 等の小細孔ゼオライト触媒の利用^{1,4)}と in situ分光を用いた活性種の動的挙動の直接観察^{5,6)}で ある。Cuゼオライト上でのNH3-SCR反応機構に関 する既報論文1-7)より、以下2点の結論が得られて いる。(1) Cuイオンが活性サイトである。(2) Cu²⁺ からCu⁺への還元, Cu⁺からCu²⁺への再酸化のサイ クルで触媒反応が進行する。Cu²⁺/Cu⁺のredoxが特 に重要視されているが、in situ分光法を用いた反応 条件下でのCu種の酸化還元挙動を生成ガス分析と あわせて計測した例は少ない。また、NH3-SCR 反応 中(定常条件)と非定常条件(Cu²⁺/Cu⁺のredox過渡

2. NH₃-SCR反応中のCuの状態の定量解析 銅イオン交換ゼオライト触媒 (Cu-AFX, Si/Al=5.3,

Cu/Al=0.25) はCu(NO₃)₂を用いたイオン交換法に より調製した(600℃焼成)。Cu K-edge XANES(透 過法) はSPring-8のビームラインBL14B2にて測定 した。100-400℃に加熱した *in situ* セル中に入れた 触媒 (3.8 mg) に反応ガス (NO, NH₃ = 1000 ppm, O₂ = 10%, He = balance, 1000 mL/min) を流通させて測定 したスペクトルを図1Aに示す。一方で、構造既知

反応)でのCuの酸化状態の両面から反応機構を検討

した例も少ない。従って、反応機構の詳細や律速段

階に関する議論は意見が別れている。当グループは

各種 in situ 分光法と計算科学を用いて小細孔ゼオラ イト系触媒によるNH3-SCRの反応機構を研究して

きた⁸⁻¹¹⁾。本解説では、小細孔ゼオライト1つであ

る AFX¹²⁾ に Cu イオンを交換した触媒 (Cu-AFX) ^{13,14)}

を例に、各種 in situ 分光法を用いた NH3-SCR の反応

機構研究を紹介する。具体的には、X線吸収分光、

紫外可視分光(UV-vis), 赤外分光(IR)の測定を加

熱ガス流通条件 (in situ) で実施し、NH3-SCRの定常

条件および各素過程(非定常条件)でのCuの酸化状

態を測定した。非定常条件における吸着分子、生成

ガスの時間変化の測定とあわせて, 反応機構, Cu

やゼオライトの役割、律速段階に関して考察する。

受理日:2020年12月4日 北海道大学触媒科学研究所

〒001-0021 北海道札幌市北区北21条西10丁目

E-mail: kshimizu@cat.hokudai.ac.jp

Copyright © 2021 Japan Zeolite Association All Rights Reserved.

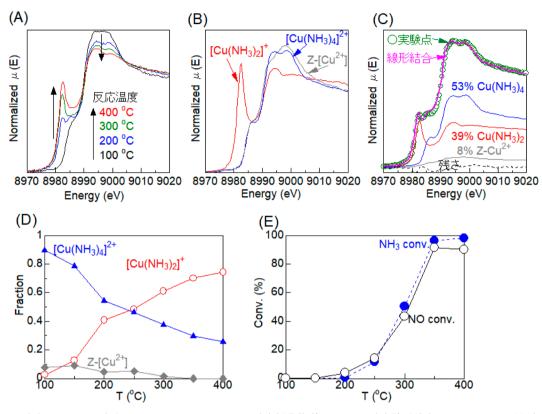


図1. (A) NH₃-SCR 反応中のCu-AFX の in situ XANES, (B) 標準物質の XANES, (C) 線形結合フィッティング例, (D) 各反応温度における各Cu種の割合, (E) XANES 測定と同一条件のNH₃-SCR における転化率

の参照試料を調製してXANESを測定した。図1B中 の、Z-「Cu²⁺]は10% O₂流通条件下 (200℃) の Cu-AFX のスペクトル (Z: zeolite framework), $[Cu(NH_3)_4]^{2+}$ は硫酸テトラアミン銅(II)水和物(0.614 g, 2.4×10⁻³ mmol) の水溶液 (50 mL) に 10% NH₃ (aq) を 0.15 mL 滴下した溶液のスペクトル、「Cu(NH3)っ]+は上記 [Cu(NH₃)₄]²⁺溶液 50 mL にヒドラジンを 0.03 mL 滴 下した溶液のスペクトルである。NH3-SCR 反応中 (100-400℃) の Cu-AFX の in situ XANES スペクトル は複数のCu錯体のスペクトルの重ね合わせであるた め、構造既知の参照試料の XANES を用いた線形結 合フィッティングにより各Cu錯体の割合を見積もっ た。線形結合フィッティングの例(図1C)に示すよ うに、実験値はシミュレーション値とよく一致した ことから、本解析で各Cu錯体の割合を定量的に見 積もることができる。この解析により、各反応温度 における各Cu種の割合が図1Dのように決定された。 低温(100℃)では、97%のCuはCu²⁺種(Z-[Cu²⁺]、 $[Cu(NH_3)_4]^{2+}$, $[Cu(H_2O)_6]^{2+}$) であり、 Cu^+ 種

(「Cu(NH₃)₂]⁺)の割合は3%であった。反応温度が 高いほど、Cu⁺種の割合が増加(Cu²⁺種の割合が減 少) し, 250℃ では Cu⁺種と Cu²⁺種が同程度の割合 (約50%)に達する。300℃以上ではCu⁺種の方が Cu²⁺種よりも多い。後述する反応機構を考慮すると. この結果は、低温(100℃)では「Cu(NH₃)₄]²⁺種の NOによる還元([Cu(NH₃)₂]⁺の生成)が律速であ り, 温度が高いほど, 還元・再酸化の速度が拮抗し, 300℃以上では[Cu(NH₃)₂]⁺の再酸化が律速である ことを示している。但し、酸化還元型の触媒反応の 定常状態のin situ分光の結果から速度論的な解釈を 引き出すためには、酸素(10%)に対して希薄な反 応物 (NOとNH3は1000 ppm) の転化率にも注意する 必要がある。同一条件で測定したNOとNH3の転化 率を図1Eに示す。300℃以下のNOとNH3の転化率 は60%以下であることから、図1Dに示すCu⁺種と Cu²⁺種の割合は反応分子が十分供給されたNH₃-SCR 反応条件におけるCuの状態を反映している。350℃ 以上で $[Cu(NH_3)_2]^+$ の割合が温度に対して頭打ちの

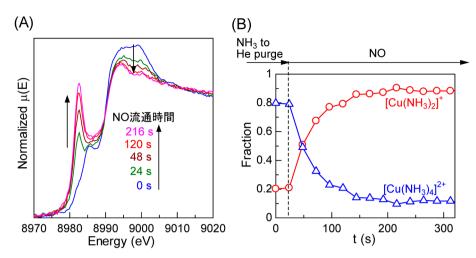


図2. (A) NH₃吸着後のCu-AFXに0.1% NOを流通させた時(200℃)のin situ XANESの時間変化と, (B) その解析結果

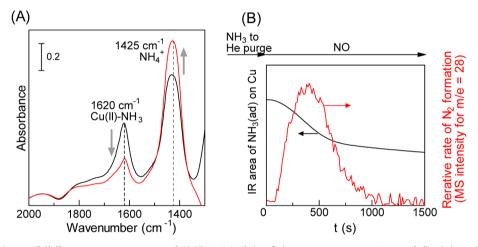


図3. (A) NH₃吸着後のCu-AFX に 0.1% NO を流通させた時 (200℃) の *in situ* IR スペクトルの変化, (B) Cu 上の NH₃ 種の IR 強度および出口の質量分析で計測した N₂生成速度の経時変化

傾向を示すのは、NOとNH₃の転化率が高すぎるため、つまり還元剤の濃度が希薄すぎるためである。

3. NH₃-SCR反応の還元素過程の観測

前章では、 NH_3 -SCR 反応中 (定常状態) o in situ 分光の結果から還元過程 ($Cu^{2+} \rightarrow Cu^{+}$)、酸化過程 ($Cu^{+} \rightarrow Cu^{2+}$) の相対的な速度の温度変化を考察した。次に、非酸素条件 (200° C) おいて還元過程だけを過渡的に進行させた場合の Cu 種の酸化状態を各種 in situ 分光法により計測した。はじめに、酸化処理後の Cu-AFX に NH_3 を吸着させた。その後、0.1% NO を流通させた時の in situ XANES の時間変化とその

解析結果を図2に示す。後述する *in situ* IR により、NH₃吸着後の試料には Cu^{2+} に吸着した NH₃が存在している。この試料にNOを流通させると、 $[Cu(NH_3)_4]^{2+}$ 種の還元 $(Cu^{2+}\rightarrow Cu^+)$ が進行し、200 s 後には80%以上のCpu種が $[Cu(NH_3)_2]^+$ 種であった。

同様の操作を加熱、ガス流通条件での in situ IR (透過法) を用いて行った結果を図3に示す。 Cu^{2+} サイトに配位した NH_3 のピーク強度がNO流通によって低下した。IR セルを通過したガスの一部を T 字の流路により質量分析器に採取し、気相生成物の同時分析を行った。 Cu^{2+} 上の NH_3 の IR ピーク強度の減少とほぼ同時期に N_2 生成が観測されたことか

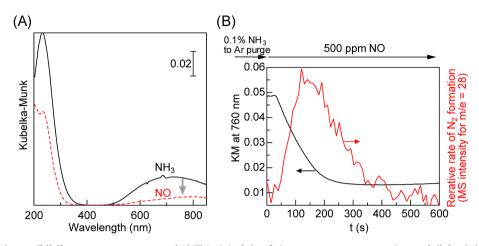


図4. (A) NH₃吸着後のCu-AFXに0.1% NOを流通させた時 (200℃) の *in situ* UV-vis スペクトルの変化と, (B) Cu²⁺種の d-dバンド (760 nm) 強度および出口の質量分析で計測したN₂生成速度の経時変化

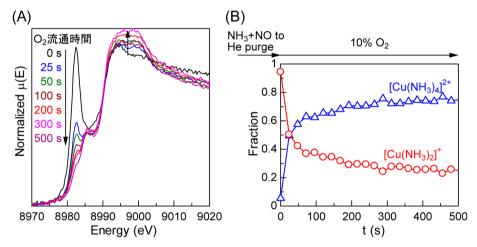


図5. (A) 0.1% NH₃+0.1% NO流通(200℃)後, 10% O₂流通時(再酸化過程, 200℃)の in situ XANESの時間変化, (B) とその解析結果

ら、 Cu^{2+} 上の NH_3 がNOと反応して N_2 が生成する経路が実験的に示された。一方、IR スペクトル(図 3A)においてNO の導入に伴う NH_4 (プロトン酸点上の NH_3)のピーク強度が増加したことから、反応に伴いプロトン酸点が生成することが示唆された。

同様の操作を加熱、ガス流通条件での in situ UV-vis (拡散反射法)を用いて行った結果を図4に示す。酸化前処理後の Cu-AFXの in situ UV-vis には Cu^{2+} イオンの d-d 遷移に起因する 760 nm 付近の吸収が観測された。還元側の素過程を検討するために、200 で 触媒中の Cu^{2+} に NH_3 を吸着させた後、その Cu^{2+} - NH_3 錯体を NO と反応させた時の Cu^{2+} 量 (760 nm O UV-

vis 強度) と N_2 生成速度 (質量分析) の時間変化を計測した結果を図4Bに示す。 Cu^{2+} の還元と N_2 生成が同時に観測された。以上,3種類のin situ分光測定結果より, Cu^{2+} に配位した NH_3 がNOと反応すると, Cu^{2+} の Cu^{+} への還元に伴い N_2 とプロトン酸点が生成すること (還元素過程) が結論された。

4. 再酸化素過程の観測

還元素過程により触媒中の Cu^{2+} が Cu^{+} となった後に、 O_2 と反応して Cu^{+} が Cu^{2+} に再酸化される過程のXANESを200℃で測定した(図5)。 Cu^{+} 種、 Cu^{2+} 種の割合を O_2 流通時間に対してプロットした

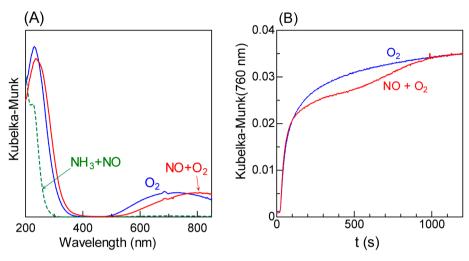


図6. (A) 0.1% NH₃+0.1% NO流通 (200℃) 後, 10% O₂ または500 ppn NO+10% O₂の流通時の *in situ* UV-vis スペクトル, (B) Cu²⁺種のd-dバンド (760 nm) 強度の経時変化

ところ(図5B),速やかに Cu^+ 種が Cu^2 種に再酸化されることが定量的に示された。2種類の酸化ガス $(O_2, NO+O_2)$ を用いて同じ試験を in situ UV-vis で検討した(図6)。 $O_2, NO+O_2$ どちらの場合も, Cu^+ の再酸化に伴う Cu^{2+} のピーク強度の増加が観測され,初期の傾き(初速度)は同程度であった。この結果は,NO は再酸化過程を促進せず,酸素が Cu^+ を酸化することを示唆する。なお, O_2 を用いた再酸化過程の気相生成物を質量分析器にて測定したところ, N_2 の生成は確認されず,水のみが生成物として観測された。 Cu^+ と O_2 とプロトンから Cu^{2+} と水が生成する再酸化素過程の詳細を議論するための実験結果は未だに不十分であるが,理論計算によって比較的低い活性化エネルギーで本反応が進行することは確認している。

5. まとめ

以上の結果をまとめて、図7にCu-AFX触媒上でのNH₃-SCR機構を示す。Cu²⁺に配位したNH₃がNOと反応してCu⁺、N₂、H⁺が生成する還元素過程、Cu⁺とO₂とH⁺からのCu²⁺と水が生成する再酸化素過程を繰り返してNH₃-SCRが進行する。低温 (100°) では $[Cu(NH_3)_4]^{2+}$ 種のNOによる還元 $([Cu(NH_3)_2]^{+}$ の生成)が律速である。温度が高いほど、還元・再酸化の速度が拮抗し、300 $^{\circ}$ 以上では $[Cu(NH_3)_2]^{+}$ の再酸化が律速である。Cu-CHA等の他のCuイオン交換ゼオライトでも同様の機構でNH₃-SCRが進

図7. Cu-AFX触媒上でのNH3-SCR機構

行する^{8,10)}。活性種はCuイオンであり、ゼオライトの役割はCu²⁺/Cu⁺イオン、および、中間生成物であるプロトンのイオン交換サイトを提供することである。このゼオライトの役割は予想以上に単純と思われるかもしれないが、高温でのCuの凝集やゼオライトの脱アルミニウムが起こりにくいゼオライトがCHAやAFX等の小細孔ゼオライトに限定されるゆえに、実用NH₃-SCR材料が限定されると考えると、ゼオライトは最も重要な役割の1つを担っているといえる。近年、MOF等の新規なカチオン交換材料が開発されてきたが、高温でダイナミックに酸化状態を変える遷移金属イオンのホスト材料としてアルミノシリケートを超える材料は極めて少ない。今後も実用触媒の材料として利用されるものと考えられる。

参考文献

- A. M. Beale, F. Gao, I. Lezcano-Gonzalez, C. H. F. Peden, J. Szanyi, *Chem. Soc. Rev.*, 44, 7371 (2015).
- M. Mizumoto, N. Ymazoe, T. Seiyama, J. Catal., 59, 319 (1979).
- T. Komatsu, M. Nunokawa, I. S. Moon, T. Takahara, S. Namba, T. Yashima, *J. Catal.*, 148, 427 (1994).
- S. V. Priya, T. Ohnishi, Y. Shimada, Y. Kubota, T. Masuda, Y. Nakasaka, M. Matsukata, K. Itabashi, T. Okubo, T. Sano, N. Tsunoji, T. Yokoi, M. Ogura, *Bull. Chem. Soc. Jpn.*, 91, 355 (2018).
- C. Paolucci, I. Khurana, A. A. Parekh, S. Li, A. J. Shih, H. Li, J. R. Di Iorio, J. D. Albarracin-Caballero, A. Yezerets, J. T. Miller, W. N. Delgass, F. H. Ribeiro, W. F. Schneider, R. Gounder, Science, 357, 898 (2017).
- 6) K. Ueda, J. Ohvama, A. Satsuma, Chem. Lett., 46, 1390 (2017).
- S. H. Krishna, C. B. Jones, J. T. Miller, F. H. Ribeiro, R. Gounder, J. Phys. Chem. Lett., 11, 5029 (2020).

- C. Liu, H. Kubota, T. Amada, K. Kon, T. Toyao, Z. Maeno, K. Ueda, J. Ohyama, A. Satsuma, T. Tanigawa, N. Tsunoji, T. Sano, K. Shimizu, Chem. Cat. Chem., 12, 3050 (2020).
- C. Liu, H. Kubota, T. Toyao, Z. Maeno, K. Shimizu, *Catal. Sci. Technol.*, **10**, 3586 (2020).
- H. Kubota, C. Liu, T. Amada, K. Kon, T. Toyao, Z. Maeno, K. Ueda, A. Satsuma, N. Tsunoji, T. Sano, K. Shimizu, *Catal. Today*, in press (DOI: 10.1016/j.cattod.2020.07.084)
- H. Kubota, C. Liu, T. Toyao, Z. Maeno, M. Ogura, N. Nakazawa,
 S. Inagaki, Y. Kubota, K. Shimizu, ACS Catal., 10, 2334 (2020).
- N. Nakazawa, S. Inagaki, Y. Kubota, *Adv. Porous Mater.*, 4, 219 (2016).
- N. Martín, C. Paris, P. N. R. Vennestrøm, J. R. Thøgersen, M. Moliner, A. Corma, Appl. Catal. B, 217, 125 (2017).
- 14) G. Shibata, W. Eijima, R. Koiwai, K. Shimizu, Y. Nakasaka, Y. Kobashi, Y. Kubota, M. Ogura, J. Kusaka, *Catal. Today*, 332, 59 (2019).

Mechanism of NH₃-SCR by Cu-AFX Zeolites

Hiroe Kubota, Takashi Toyao and Ken-ichi Shimizu

Institute for Catalysis, Hokkaido University

The selective reduction reaction of NOx $(NH_3\text{-}SCR)$ using NH_3 as a reducing agent has been commercialized as a core technology of a urea-SCR system for diesel vehicles. A recent hot topic in heterogeneous catalysis is fundamental research for understanding the high NH_3 -SCR performance and high durability of Cu ion-exchanged small pore zeolites such as Cu-CHA. This paper describes our recent results on the mechanism of NH_3 -SCR over Cu ion-exchanged AFX zeolite (Cu-AFX) studied by using various in situ spectroscopic methods. It is concluded that Cu^{2+} - NH_3 complexes react with NO to produce N_2 , H^+ and Cu^+ (reduction half cycle), and subsequent reaction of Cu^+ and H^+ with O_2 to yield water and Cu^{2+} (oxidation half cycle). The active species are Cu ions and the role of zeolites is simply to provide ion exchange sites for Cu^{2+}/Cu^+ ions and proton.

Key words: selective reduction of NOx, diesel de-NOx, reaction mechanism, copper ion exchanged zeolites

Copyright © 2021 Japan Zeolite Association All Rights Reserved.