《解説》

モンモリロナイト/ナイロン複合化合物

(株)豊田中央研究所 福 嶋 喜 章

1. はじめに

インターカレーションを自分のテーマとして取り 組もうと思って勉強し始めた時,興味が引かれたの は結晶の膨張という点であった。ゼオライトを始め とする空隙を有する化合物は,その空隙に種々のゲ ストを取り込み,いわゆる包接化合物を形成する。 インターカレーションもこの包接現象の一つである。 しかし,この場合には決められた空間が用意されて いるのでは無く,ゲストの大きさに応じて必要最小 限の空間が創造される。構造のこのような柔軟性が インターカレーションの重要な特徴の一つであるは ずである。

ゲストに応じてその空間が変化するのであれば, ゲスト分子の数,あるいは分子量を無限に大きくす れば,それに応じて空間の大きさは無限に広くなる のであろうか。具体的には,ホストが粘土鉱物のよ うな層状物質である層間化合物で,その層間距離が 無限に大きい化合物は合成出来るのであろうか。こ のような単純な発想でこの仕事は始まった。

2. 層間の凝集力

モンモリロナイトのような粘土鉱物では、その層 内での結合力に比較して、層間の結合力は極めて弱 い。そのために、層間化合物を形成しやすい。しか し、それらが結晶として存在する以上、層間に凝集 力があることも事実である。層間化合物を形成する には、この凝集力に抗して層間を押し広げる力を最 低与えなければならない。また、層間に侵入した分 子は、これに対応した圧力を常に受けていることに なる。

物質間に普遍的に働く力として、ファンデルワー ルス力を考えてみる。板状粒子間に単位面積当りに 働くエネルギー; V_aは、

$$V_{a} = -\frac{A}{48\pi} \left\{ \frac{1}{h^{2}} + \frac{1}{(h+\delta)^{2}} - \frac{2}{(h+\delta/2)^{2}} \right\}$$
(1)

で表わされる¹⁾。ここで δ は板状粒子の厚さ,hは

粒子壁間の距離, Aは Hamaker 定数とよばれる物 質特有の定数である。層間隔を Ah だけ広げるのに 必要な力; F_aは (2) 式で与えられる。

$$F_{a} = \frac{dV_{a}}{dh} = \frac{A}{24\pi} \left\{ \frac{1}{h^{8}} + \frac{1}{(h+\delta)^{8}} - \frac{2}{(h+\delta/2)^{8}} \right\}$$
(2)

これらの式に δ =1 nm, A=9.5×10⁻²⁰ Jを代入して hの関数として V_a および F_a を求めると図1のよう になる。ここではHamaker 定数; A, の値として 真空中の理論値¹⁾を用いたが,これは実験値²⁾とも

良く一致している。

実際にはこの力の他に層の持つ負電荷と層間陽イ オンによる静電相互作用も無視し得ない。しかし, ファンデルワールス力だけでも,層間距離が20nm の時には約7気圧,1.5 nmでは80気圧,1.2 nmで は1,500気圧にまで達する。粘土鉱物の層間距離を 押し広げて層間化合物を形成するには,かなりの量 のエネルギーが必要とされるようである。それと同 時に,層状物質の層間領域は我々に高圧反応容器を 提供してくれていたことも,このような簡単なモデ ルから推測される。

3. モンモリロナイトの水による膨潤

層間の凝集力は意外に大きな値である。しかし, それに対抗して層間を広げて層間化合物を形成する 駆動力も身近に多くある。その代表が粘土鉱物の水 による膨潤現象である。

モンモリロナイトを始めとするスメクタイト系粘 土鉱物やバーミキュライト等では湿度40~60%の 大気圧下で1~2分子層の水が層間に存在している ことが多い。水分子の侵入の駆動力は層間陽イオン の水和エネルギーが主であると考えられる。陽イオ ン交換容量(CEC)が92ミリ当量/100gのNa型モ ンモリロナイトでは層間領域の 0.68 nm² の面積に 1 個の割合でNa⁺が存在する計算になる⁸⁾。Na⁺の水 和エネルギーを404 k I/mol とすると、層間 Na⁺の 水和エネルギーの総和は約1J/m²となる。これは、 図1に示した層間の凝集力の対抗するには充分なエ ネルギーである。さらにシリケート表面の酸素イオ ンの配列の中に生成する六員環空隙の大きさは水分 の大きさにフィットし、そこへの吸着エネルギーは 90 k I/mol と見積られている⁴⁾。これらのエネルギ - も加わるため、層間に水が侵入する時は前述の層 間凝集エネルギーを差し引いても、まだ多くの仕事 をするだけのエネルギーが発生する。モンモリロナ イトに第一層日の水が侵入して層間距離が1nmか ら 1.25 nmに増大する時に発生する膨潤圧は約1000 MPa にも達することが知られている^か。

このような駆動力により,層間に1~2分子層の ゲストが入いり込んだ層間化合物の例は多く報告さ れている。しかし,それ以上に分子が入り込んだ 例;すなわち4分子層以上のゲストが層間に入った 層間化合物の例は極めて少ない。Na⁺型モンモリロ ナイトでは,図2に示したように水の添加量の増大 に伴ない,その層間距離は連続的に増加する^{6,7)}。こ

○; Norrish⁶⁾ による, □; Fukushima⁷⁾ による実験値

の場合も低水分領域では水分子層はシリケート層に 平行に1.2、あるいは3層配列している⁶⁾。しかし, それ以上に水が増加すると層間距離は連続的に増加 する⁷⁾。それは,各々のケイ酸塩層が水中に分散し た状態,言いかえるとNa⁺(ケイ酸塩層)⁻が液体の 水に溶解した状態と考えられる。このような無限膨 潤が実現するのは,陽イオンやシリケート層に吸着 した水分子の分極により,次の水分子を層間へ引き 込みこれを分極させる,という連鎖が長範囲に及ぶ ためであると考えられる。

有機陽イオン系界面活性剤でイオン交換したモン モリロナイト;有機モンモリロナイト,でも有機溶 媒による膨潤が観測されている⁸⁾。しかし,この場 合も溶媒分子と有機陽イオンとの直接の相互作用の みが膨潤の駆動力である。そのため,層間への溶媒 分子の侵入には限界がある⁸⁾。水以外の,しかも固 体のゲストを用いて,無限膨潤が実現し得ないであ ろうか。

4. 有機高分子との複合化

ほとんどの有機高分子の重合エンタルピーは50 kJ/mol 以上あり、膨潤を実現させるには充分であ る。アクリロニトリルやメタクリル酸メチルなど双 極子モーメントの大きいモノマーは、モンモリロナ イトと層間化合物を形成する⁹⁾。また,直接層間化 合物を形成しない,スチレンやイソプレンなど⁹⁾も, 有機陽イオンでイオン交換したモンモリロナイトの 層間に侵入することが出来る¹⁰⁾。このモノマーとの 複合体にr線を照射^{10,11)}したり,重合開始剤を加え て加熱¹¹⁾したりすることにより,モンモリロナイト と有機高分子との層間化合物が得られる。しかし, 得られた化合物の層間距離は,モノマーを過剰に加 えた場合でも,モノマーとの化合物と同じで2分子 層までしか層間に侵入しない。

ナイロンのモノマーであるアミノ酸も,モンモリ ロナイトと容易に層間化合物を形成する。これを窒 素気流中で250℃に加熱することにより脱水縮合し て,ナイロンとの化合物が得られる。この場合も,ナ イロン量の増加に伴ない,図3に示したように分子 層が1→2→3層と増加する¹²⁾。しかし,それ以上 はモノマー量を増加させても層間距離は増加せず, 過剰な有機分子は層外で重合するだけであった。

図3 アミノ酸をモノマーとして用いた場合の モンモリロナイトの膨潤挙動¹²⁾

このような方法では、予め層間に侵入したモノマ ーは、そこで重合させポリマーとの層間化合物が得 られる。しかし、層外に存在したモノマーも同時に 重合が開始される。そのため、エネルギー的に不利 な層間で重合反応を進行させるよりは、層外で行っ た方が有利である。したがって、この方法では重合 エネルギーは層間を押し広げる仕事には使われなか ったと考える。

5 ナイロンによる膨潤

重合反応を駆動力とした膨潤は、モノマーに環状 分子である ϵ – カプロラクタムを利用することによ り実現した。 ϵ – カプロラクタムは(3)式の反応;

$$n \begin{bmatrix} \text{CO} - \text{NH} \\ (\text{CH}_2)_5 \end{bmatrix} \xrightarrow{\bigtriangleup} (\text{CO} - (\text{CH}_2)_5 - \text{NH})_n + \Delta H \quad (3)$$

により、6-+1ロンとなる。その際の重合エンタ ルピー; ΔH , は約-14 kJ/mol である。この重合 反応を開始するには、 ε - カプロラクタムの開環が 必要であり、それには酸触媒が有効である。Cu²⁺等 の無機1 オン、水分子あるいはカルボキシル基がこ のような触媒として働くことが期待される。このよ うな開環触媒が粘土鉱物の層間に存在し、そこから 重合反応が進行すれば、重合エネルギーは膨潤のた めの仕事に有効に利用出来るはずである。

種々の層間陽イオンを持つモンモリロナイトの共 存下でのカプロラクタムの重合速度の測定結果¹⁸⁾を 図4に示した。このような開環重合開始作用は粘土 鉱物が持つ特徴では無く、陽イオンのものであるこ とは、単にCu(NO₈)。やNH₂(CH₂)₁₁COOHをカプ ロラクタムと混合しただけでも重合反応が進むこと で確認された。このモンモリロナイトに対して重量 で4倍のカプロラクタムを混合後、80℃でカプロラ クタムを融解させ両者を均一に混合し、これを263 ℃で5時間処理した。この各段階での層間距離を測 定値^{18,14)}を表1に示した。重合反応が進行した系で は層間距離も増大したことが図4および表1の結果 は示している。特に層間イオンに12-アミノカプロ ン酸イオン; $NH_8^+(CH_2)_{11}COOH$, を用いた時には, カプロラクタムを融解させるだけで,層間距離が4.9 nm に増大している。これにより、予め多くのモノ

X;反応率

表1 カプロラクタムの重合前後のモンモリロ ナイトの層間距離^{18,14)}(モンモリロナイ ト含量 20 wt %)

		カプロラクタム混合		
層間イオン	未混合	20°C	80 C	重合後
Na ⁺	0.99	1.51	1.53	**
H ⁺	1.32*	1.51	<u> </u>	10以上
Cu ²⁺	1.22*	1.51		10以上
$N^{+}(CH_{3})_{3} \cdot C_{14}H_{29}$	1.92	2.97	3.15	**
N ⁺ H ₃ C ₅ H ₁₀ COOH	1.30	1.53	1.51	10以上
$\mathrm{N}^{+}\mathrm{H}_{3}\mathrm{C}_{11}\mathrm{H}_{22}\mathrm{COOH}$	1.65	2.85	4.90	10以上
* . ++++++++ / 日日	1.1.+ 10)	1911	(nm)

*; 未乾燥 (層間水あり)

**;未重合

マーが層間領域に侵入し、層間での重合を起りやす くしている。それと同時に,層間隙を予め広くする ことは、シリケート層間の引力を著しく減少させ、 その後の膨潤をさらに起りやすくする効果も期待さ れる。表1の層間距離を用いて(2)式で計算すると, Cu²⁺型やNH₈⁺(CH₂)₅-COOH 型モンモリロナイ トを用いた場合,膨潤を始めるには約800気圧の力 を与えなければならない。 これに対して, NH⁺ (CH₂)₁₁COOH 型を用いると、わずかに 0.2 気圧で 良いことになる。この程度の力であれば、重合エネ ルギーに頼るまでもなく、例えば機械的混合でも膨 潤が実現しそうである。しかし、カプロラクタムの 重合エネルギーは、上記圧力に抗して層間距離を広 げる仕事量に比較して充分大きいので, Cu²⁺ 型モ ンモリロナイトでも膨潤が実現したと推測される。 しかしながら、NH⁺(CH₂)₁₁COOH型モンモリロナ イトは、カプロラクタムを原料として、6-ナイロン との複合化合物を合成するためには最適の化合物で あることも以上の考察から判る。

6. ナイロン/粘土鉱物ハイブリッド材の特性

このようにして得られた複合体では、図5に示し たようにナイロンの母相にシリケート層が均一に分 散している。しかも、図5において黒い線は粘土鉱 物を構成している厚さ約1nmのシリケート層一枚 と考えられる。実際、TEM写真から測定される層 間距離と、XRDの低角のピーク位置から求めたそ れとは良く一致した¹⁵⁾。

ナイロンは,エンジリアニアリングプラスチック の代表として,多く利用されている。しかも,その 分子構造から明らかなように無機物での補強効果が

- 図5 ε-カプロラクタムをモノマーとして 用い、NH⁺₈(CH₂)₁₁COOH型モンモリ ロナイト5wt%共存下で重合して得ら れた複合化合物の透過電顕写真
- 表 2 6-ナイロン+ 4.7 wt % モンモリロナイト 複合体の特性¹⁷⁾

		6-ナイロンのみ	複合体
引張強さ	23 C	68.6 M Pa	97.2 MPa
	120 C	26.6 M Pa	32.3 MPa
引張弾性率	23 C	1.11GPa	1.87 GPa
	120 C	0.19GPa	0.61 GPa
シャルピー行	衝撃値	6.21 kJ/m²	6.06 kJ/m²
吸水量(100)℃ 30分)	2.31 %	1.36 %
光透過率(7	00nm, 1mmt)	9.2 %	37.5 %

大きい材料として知られている。そのため、鱗片状 無機粒子である雲母等を混入した複合材料が多く開 発されている¹⁶⁾。図5に示したような複合体は、こ のような複合材が目指していた材料の一つと言える。 モンモリロナイトを 4.7 wt % 含む複合体の特性を表 2に示した17)。わずかのモンモリロナイトの添加で, 機械的特性が著しく向上している。無機物質がナノ メーターレベルで分散し、しかも母相との結合も充 分であるため、このような結果が得られたと考えら れる。表2に示してある特性の中で,最下段に示し た光の透過性に関する結果は、特に興味深い。すな わち、結晶性ポリマーであるナイロンは、その結晶 子による散乱のため、不透明であることが多い。そ れに対して、前述の方法で合成すると透明性が向上 した。これは、シリケート層の共存下での合成によ り、生成したナイロンの結晶子の大きさが影響を受 けたことを示唆しており、興味深い。

7. 複合化合物の構造

Cu²⁺型モンモリロナイトを用いた層間重合法に より合成した複合体の XRD 像を図6に示した。層 間距離が10 nm以上,すなわちシリケート層の影響 がほとんど無い領域では,通常の重合法で得られる ものと同じα型ナイロンが観測された。層間距離が 2~4 nmの領域ではr型ナイロンが観測されるよう になる。この程度の層間距離ではゲストは,1~10 気圧の圧力を受けていることが,図1から読み取れ る。すなわち,やや圧力を受けた状態ではr型ナイ ロンが得られると言える。

それより、ナイロンの量が少ない領域では、図3 の結果と同様に, 層間距離は 1.37 nm と 1.83 nm とな る。これらの試料では、通常のナイロンに対応する XRD ピークは全く観測されず、わずかの非晶質ピ $- 2 \delta = 23^{\circ} (Co - K_{\alpha})$ 付近に観測された。この ピーク位置は、ホストのモンモリロナイトの(02) ピーク位置と重なり合っていて明確では無いが,図 6の最下段に示したほとんど粘土鉱物のみの試料で 観測される,二次元結晶特有の非対称なピークに, それより上の回折像では幅広いピークが重なってい る。この(02) ピークは、図7 に示したようにシリ ケート層表面の酸素イオンの配列を反映している。 このように、ホストであるモンモリロナイトの表面 のイオン配列に関連して、ゲストであるナイロンの 分子鎖が配列していることを示唆する結果が得られ たことは興味深い。粘土鉱物の膨潤現象を考察する 際には、イオン交換、水和等の極性結合あるいは重 合エネルギーがその駆動力として必要であることを これまで述べて来た。しかし, 層表面でのゲスト分 子の配列を考える場合は、シリケート層表面酸素と のファンデルワールス力が重要となることをこの結

図6 Cu²⁺ モンモリロナイト共存下で合成した, ナイロン/モンモリロナイト複合化合物の 粉末X線回折像

ー点鎖線は、モンモリロナイトの(02)ピーク, α 型ナイロンおよび τ 型ナイロンのピーク位置を示す。

図8 XRDの一次元フーリエ合成結果および d=2.30 nm の複合化合物の構造モデル

果は示している。 XRD の一次元フーリエ合成結果 もこれを支持する。図8には図3のアミノ酸をモノ マーとして用いて合成した試料の XRD のフーリエ 合成結果と,層間にナイロン層が3層存在する場合 のモデル図を示した。層間にナイロン分子は、その ジグザグ面を層に平行に配列している。これは、2 節で考察した層間でうける圧力の影響から容易に推 測出来る。すなわち, ゲスト分子は層間では出来る だけ平らに、しかもホスト層に平行に配列しようと する。しかし、シリケート層表面とゲスト層との距 離が、ゲスト層間のそれより大きい。そのため、こ の濃度領域での層間距離の変化は、最初の第一層が 侵入する時のみ 0.3 nm で, つづいて起こる増加分 0.5 nmに比較すると明らかに小さい。この事実も、 シリケート層とナイロン分子間のファンデルワール ス力の重要性を示唆している。

シリカゲルへの脂肪族化合物の吸着エンタルピー の実測値¹⁸⁾から推測すると、メチレン基一個あたり がシリケート表面から受けるファンデルワールス引 力は7kJ/mol 程度である。したがって、6-ナイロ ンの場合約5×7=35kJ/mol の引力をシリケート 表面から受ける計算になる。それに対して、水素結 合は大きく見積っても10kJ/mol程度である。この ように、シリケート表面でのゲスト分子の構造を決 めているのは、ファンデルワールス力であると考え られる。

8. むすび

ここで主題とした膨潤現象は、インターカレーションにしか無い興味ある現象である。それにもかか わらず、それに着目した材料開発は意外に少なかっ たように思われる。膨潤、あるいは層間隙の変化は 当然仕事を伴なうものであり、ゲスト分子はそれな りの束縛を受けるのも事実である。この束縛力ある いはホスト/ゲスト・相互作用には弱い物理相互作 用が最も重要なのではないか,と私は今感じている。 このような弱い相互作用と,構造の柔軟性の利用, これらが,本稿のキーワードである。

参 考 文 献

- 1) 日本化学会編;"化学便覧,基礎編", pp.II98~100, 丸善, 1984.
- D. Tabor and R. H. S. Winterton, Proc. Roy. Soc. London, A., 312, 435 (1969).
- 3) H. van Olphen; "An Introduction to Clay Colloid Chemistry", A Wiley-Interscience Publication New York, 1976, Appendix II-a, pp. 254.
- N. T. Skipper, K. Refson and J. C. D. McConnell, Clay Miner., 24, 411 (1989).
- 5) G. Kahr, F. Kraehenbuehl, H. F. Stoeckli and M. Muller-Vonmoos, *Clay Miner.*, **25**, 499 (1990).
- 6) K. Norrish, Disc. Faraday Soc., 18, 120 (1954).
- 7) Y. Fukushima, Clays Clay Miner., 32, 320 (1984).
- Y. Fukushima, "Surfactant in Solution", Vol. 6, Ed. by K. K. Mittal and P. Bothorel, Plenum Pub., (1986), 1697.
- 9) A. Blumstein, J. Polym. Sci. A, 3, 2653 (1965).
- 10) C. Kato, K. Kuroda and H. Tanaka, *Clays Clay Miner.*, **29**, 294 (1981).
- 11) A. Blumstein, J. Polym. Sci. A, 3, 2665 (1965).
- 12) Y. Fukushima and A. Usuki, Abstracts 9th Inter. Clay Conf., Strasberg, France, 1989.
- 13) Y. Fukushima and S. Inagaki, J. Incl. Phen., 5, 473, (1987).
- 14) 福嶋喜章, 岡本篤彦, 稲垣伸二;粘土科学, 26, 187 (1986).
- 15) Y. Fukushima, A. Okada, M. Kawasumi, T. Kurauchi and O. Kamigaito, *Clay Miner.*, 23, 27 (1988).
- 16) 例えば、(株)クラレ;クラレMRP[®]カタログ.
- 17)小島由継,岡田 茜,臼杵有光 川角昌弥,倉内紀雄, 上垣外修己,出口隆一;高分子学会予稿集,39,2430 (1990).
- 18) 文献1) に同じ. pp. II-327.
- 19) 金沢康夫、「実例パソコン、結晶の構造と形」講談社 サイエンティフィク、1990.