銅イオン交換ゼオライトの 還元・酸化挙動と活性化

長崎大学教養部 松 本 泰 重

1. はじめに

銅イオン交換ゼオライトは、ブタジエンのオリゴ メリゼーション¹⁾や NO の分解²⁾等のいくつかの反 応において優れた触媒能が認められて以来ライムラ イトの中にあるが、酸化触媒として用いられた例は それほど多くない。これは、銅に限らず他の遷移金 属イオンで交換したゼオライトの場合も含めて、対 応する担持酸化物に比べて酸化反応における触媒活 性が劣っていることに起因しているものと思われる。 しかしながら、ゼオライトマトリックスが分子ディ メンジョンの均一な細孔構造を有しているうえに、 大きなイオン交換能と熱的安定性を具備している優 れた担体であることを考慮すれば、適切な前処理を 施こすことによって、活性金属成分の特性を十分に 活した高分散触媒を調製することが可能なはずであ る。本文では、その一例として、もっとも簡単な前 処理である還元・酸化処理による銅イオン交換ゼオ ライトの活性化過程と、これによって生成する活性 種の化学構造および作用機構について概説する。

2. 酸化触媒としての銅イオン交換ゼオライトの 活性

酸化反応における固体触媒として銅イオン交換ゼ オライトは以下に述べるいくつかの特性を有してい る。(1)通常の担持酸化銅触媒と同様に、銅イオン 交換ゼオライトは低温領域において触媒能を発揮す る。一例として、NOの酸化反応におけるCu-Xゼ オライトの触媒活性を、他の代表的な遷移金属イオ ンで交換したゼオライトのものと比較した結果を図 1に示す³⁾。このように、Cuゼオライトは、平衡 論的観点から酸化反応に有利な低温領域において作 働する。その理由は、後に詳述するが、ゼオライト 中の銅成分自身の還元一酸化が低温で、可逆的にバ ランスよく進行することによるものと考えられる。 (2)銅イオン交換ゼオライト触媒の酸化活性は銅成 分の表面濃度に著しく影響される。図2は、CO酸

図 2 Cu-Yゼオライト触媒のCO酸化活性 に及ぼすCu²⁺イオン交換率の影響

化反応におけるCu-Yゼオライトの比活性を銅イオ ン交換率に対してプロットしたものである⁴⁾。Cu-Yの酸化活性はイオン交換率5%以上で認められ, その後 Cu 濃度の増加とともに指数関数的に上昇す る。このような傾向は、他の遷移金属イオン交換ゼ オライトを用いた場合においても認められるゼオラ イト触媒の特徴である^{5,6)}。 これは、遷移金属イオ ンのような多価カチオンは、(AlO。)アニオンの密 度が高くて静電的には安定であるが触媒作用にとっ て有効性に乏しい小さな細孔から大きな空洞へと (hexagonal prism \rightarrow sodalite cage \rightarrow super cage) 順次交換されていくことを示唆しているのであろう。 (3) Cu ゼオライトの酸化活性は調製過程における イオン交換溶液の水素イオン濃度に依存する。図3 はこの特性についての一例を示したものであるが"). CO酸化反応におけるCu-Yゼオライト触媒の比活 性はイオン交換溶液の pH値とともに増大し、 pH= 8で担持酸化銅触媒のそれに匹敵する極大値を示す。 これは、 pH 値の高い溶液中で交換した場合に生成 する嵩高い水和イオンが触媒作用に有効な super cage に位置するためであると解釈されている。こ のことから、弱酸性溶液で交換したゼオライトの場 合でも、NaOHでSoakしたり⁸⁾, NH₈で処理する ことによっても⁹⁾, 同様な効果が期待できる。(4) 銅イオン交換ゼオライト触媒のもっとも重要な特性

図3 Cu-Yゼオライト触媒のCO酸化活性に
及ぼすイオン交換溶液の水素イオン濃度の影響

処理触媒による CO 酸化 (A) および NO 酸化 (B), 未処理触媒による CO 酸化 (C) および NO 酸化 (D) 。

は、焼成や還元・酸化等の前処理の活性に及ぼす効 果が、通常の担持酸化物触媒に比べて大きいことで ある。図4は、750℃においてCOとO2により連続 的に還元・酸化処理を施したCu-Yゼオライト触媒 のCOおよびNOに対する酸化活性を、処理前のも のと比較した結果である¹⁰⁾。このように、Cu-Yゼ オライトは、還元・酸化処理による活性化によって、 担持酸化銅触媒をはるかに凌駕する活性を示すよう になるが、その理由については次節以下で詳述する。

3. 銅イオン交換ゼオライトの還元・酸化挙動

低温領域における銅イオン交換ゼオライト触媒の 酸化活性について、その還元・酸化挙動の観点から 検討してみる。Cu-Yゼオライトの還元・酸化挙動 に関して、動力学的に、また、分光学的に、多く の研究結果がこれまでに発表されている^{11~18)}。 Nacchache 5^{11} は焼成後のCu-YをH₂とO₂ で還 元・酸化処理することによって、ゼオライト細孔外 表面に CuO の大きな結晶が成長することを報告し ている。他方、Herman 5^{12} は同様の処理過程中、 細孔内のCu²⁺イオンはH₂により Cu 金属に還元さ れるが、O₂によって Cu²⁺イオンに再酸化されて元 のサイトに戻るとしている。

H₈に換えてNH₈^{14,15)}やCO^{8,16~18)}を還元剤とし て用いると、ゼオライト中の Cu²⁺ イオンは選択的 にCu⁺イオンに還元され、生成した Cu⁺は O₂によ ってCu²⁺に再酸化される。COおよび NH, による 還元で生成した Cu⁺イオンを H₂ によってさらに還 元すると、前者の場合はゼオライト細孔外に大きな 金属結晶が生成するのに対して、後者の場合は細孔 内に均一な金属微粒子を得ることができる"。生成 した Cu 金属におけるこの差異は、ゼオライトの表 面構造の違いに起因するものと推測される。すなわ ち、NH。を最初の還元剤として用いた場合はCu⁺イ オンと同時に生成する Brönsted 酸点上に安定な NH⁺ イオンが存在するので、続くH₂による還元で 生じるCu金属の凝集が制限されるものと思われる。 他方, COによる部分還元では格子酸素が引き抜か れてLewis 酸点が生成するので、表面にNH⁺のよ うな障害物がないから、 Cu 金属の移動は比較的自 由に進行して大きな粒子が形成されるものと解釈さ れる⁹⁾。

図5は、COとO2によって還元と酸化をくり返し 行ったときのCu-Yゼオライトの重量変化を測定し た結果である¹⁰⁾。還元時におけるCu-Yの重量は還 元・酸化サイクルの回数とともに減少し、1e⁻/Cu に相当する一定値に到達する。COやO2の分圧や処 理温度を変化させてもこの値が一定であることから、 600℃以下では、ゼオライト中のCu²⁺イオンはCO によって選択的に、また、可逆的にCu⁺イオンに還 元されることが示唆される。処理温度を 750℃に上 昇させると、還元時の重量減少は倍増し、2e⁻/Cu に相当するレベルまで還元されていることから、ほ

活性化前(破線),活性化後(実線)。

とんどすべての銅成分は金属の状態にあることにな る。高温での還元によってひと度金属銅が生成する と、COとO₂による還元・酸化処理によってゼオラ イト中の銅成分はCu(I) → Cu(0)の可逆反応が起 るようになる。このような状態になったCu-Yゼオ ライトは低温領域での酸化反応に高い触媒活性を示 すことから(図4),高温でのCO/O₂処理によって 新たな触媒中心が発現したものと考えられる。

還元・酸化処理による銅イオン交換ゼオライトの 活性化は、還元力のより大きい H₂を還 元剤として用いると,効果はさらに劇的 となる。図6は、H₂とO₂とにより低温 で行った活性化前後の H₂ による Cu-Y の昇温還元スペクトルの一例である17)。 未処理のゼオライト中のCu²⁺イオンは. 200と350℃における2段階還元によっ て,それぞれ,Cu⁺イオンとCu金属に なる。還元・酸化処理後の触媒の還元曲 線ではこれらのピークに加えて、120℃ に鋭いピークが認められ、新たな活性種 の生成が示唆される。著者らの行った活 性化は,真空加熱処理,H。による還元 および O。による再酸化の3過程から成 るが、活性種の生成量に及ぼす各過程の

· · · · · · · · · · · · · · · · · · ·	treatment / K			H ₂ consumption/mmol g ⁻¹		
	evac*1	redn*2	oxin ^{*3}	species X	total	
effect of evacuation	293	673	673	0.12	0.75	
	523	673	673	0.38	0.97	
	573	673	673	0.27	0.94	
	673	673	673	0.22	0.91	
	773	673	673	0.05	0.62	
effect of reduction	523	573	473	0.19	1.08	
	523	673	473	0.49	1.07	
	523	773	473	0.15	0.79	
effect of reoxidation	523	673	473	0.49	1.07	
	523	673	573	0.49	1.06	
	523	673	673	0.38	0.97	

表1 Cu-Yゼオライト上の活性種の生成に及ぼす
還元・酸化処理条件の影響

Treatments at each stage were performed for $*^1$, 0.5h; $*^2$, 2h; $*^3$, 2h.

温度の影響を表1に示す¹⁸⁾。これらの過程のなかで 活性種の生成にもっとも顕著な影響を及ぼすものは 最初の加熱処理である。これは前に述べたように、 配位水によって制御された Cu²⁺ イオンのサイトの 差異に起因する結果であろう。

図7は、還元・酸化処理の条件によって活性種の 量を変化させたCu-Yについての低温CO酸化反応 における触媒活性を示したものである¹⁹⁾。このよう な低温領域では、未処理のCu-Yはまったく触媒能 を示さないが、処理後のゼオライトでは、活性種の 量とCO酸化速度との間には比例関係が認められる ので、昇温還元スペクトルにおいて認められた活性

反応温度, 100℃(a), 120℃(b)。

種がこの反応の触媒中心であるとい えるだろう。なお,活性化したCu-YゼオライトによるCO酸化反応の 活性化エネルギーは活性種の量に依 存せず一定値を示すことから,還元 ・酸化処理条件を変えて触媒中心の 「質」に影響することなく,「量」 を変化させることが可能となる²⁰⁾。

4. 銅イオン交換ゼオライトの触 媒中心と作用機構

これまで述べてきたように,通常 の CuO 担持触媒に比べて低い酸化 活性しか示さない銅イオン交換ゼオ ライトも,適切な条件の下で,還元 酸化処理を施こすことにより.低温

領域で高い触媒活性を示すようになる。しかしなが ら、その触媒中心の化学構造や作用機構については、 研究例も少なく、未だ推測の域を脱していない。図 8は、還元・酸化処理による活性化前後の ESR ス ペクトルを示したものであるが²⁰⁾、強磁性体である $Cu^{2+} イオンのスピン強度は活性化によって著しく$ 減少する。また、活性化後の Cu-Yに COを吸着させて測定した IR スペクトルにおいて Cu⁺- CO 複合

 図8 H₂/O₂による活性化前後のCu-Y ゼオライトのESRスペクトル
活性化前(a),活性化後(b), bの試料の COによる還元後(c)。

体に帰属される吸収帯はまったく認められていない²⁰⁾。これらの観測から,活性種はイオンの状態にあるのではなく,共有結合性の大きな酸化物であると予想される。しかるに, H_2/O_2 およびCO/O₂によって還元・酸化処理を行ったCu-YのX線回折スペクトルにCuOやCu₂O結晶の存在は認められていない^{10,18~20)}。

このような状況において、触媒中心の構造やその 反応による変化についての知見を得るには、EXAFS スペクトルによる局所構造に関する情報を検討する ことが有力な手段となる。図9は、活性化後のCu-Yゼオライトとその低温還元後のEXAFSスペクト ルのフーリェ解析によって得られた動径分布関数を 示したものである¹⁹⁾。また、表2は、種々の処理を

 H_2/O_2 による活性化後(A), AのCOによる還元後(B), Bの O_2 による酸化後(C), CのCOによる還元後(D)。

表2 活性化過程および CO/O₂ 処理サイクルにおいて EXAFS スペクトルのデータから得られたCu-Y ゼオライト中のCuの構造因子

Sequence	Sample and Treatment	Bond	<i>R/</i> Å	Ν
1	CuY evacuated at 523K	Cu-O	1.97	3.6
2	CuY reduced with H ₂ at 673K	Cu-Cu	2.51	10.0
3	CuY oxidized with O ₂ at 473K	Cu-O	1.96	4.4
4	CuY reduced with CO at 423K	Cu-Cu	2.52	5.0
5	CuY oxidized with O ₂ at 423K	Cu-O	1.96	4.2
6	CuY reduced with CO at 423K	Cu-Cu	2.52	4.9
	Cu foil	Cu-Cu	2.51	12.0
	CuO powder	Cu-O	1.96	4.0
	Cu ₂ O powder	Cu-O	1.84	2.0

図 10 COによる還元前後の活性化した Cu-Y ゼオライトのEXAFS 関数におけるシミ ュレーション

H₂/O₃による活性化後(A), AのCOによる還元後。 実線(逆フーリエ変換値), 白丸(計算値)。

行った後の試料について得られた動径分布関数にお ける main peak についてのシミュレーションの結果 で、Cu 成分の結合距離と配位数を総括したもので ある²⁰⁾。400℃における水素還元によって、焼成後 のCu-Y中のCu²⁺イオンは、ほとんどすべてCu金 属になり、その Cu-Cu結合の距離はCuフォイル におけるもの(R=2.51 Å) と同じ値となる。還元し たこの Cu-Yを200℃でO₂により再酸化すると、

> 1.96 Åの位置にのみ動径分布のピー クが認められるが(図 9 A), これは CuO結晶中のCu-O結合距離と一 致する。さらに、このピークについ ての逆フーリェ解析結果は、CuO散 乱から求めた計算値をよく再現する ことから(図 10 A)¹⁹⁾, 還元・酸化処 理によって生成したCu-Y上の活性 種は CuO であると結論される。

> 活性化後のCu-Yを触媒反応温度 150℃でCOにより処理すると,動 径分布関数において2.52ÅのCu

Cu結合の位置にピークが現れ(図9B),このピー クについての逆フーリェ変換曲線は、無限金属結晶 におけるCu-Cu散乱から求めた計算値と完全に一 致する(図10B)。したがって、活性種は反応温度 においてCOによりCu金属にまで還元されたこと になる。活性化前のCu-Y中のCu²⁺イオンはこの 温度ではCOと反応せず、200℃でCu⁺イオンとな り、750℃の高温に至って初めてCu金属まで還元 されることを考慮すれば、還元・酸化処理がCu成 分の活性化にいかに寄与しているかを示唆している。 さらに、活性化後のCu-Yを、触媒反応温度におい てCO/O₂により還元・酸化を繰り返すと、動径分 布上にCu-OとCu-Cu結合に対応するピークが交 互に出現し(図9CおよびD)、活性種の可逆的な還 元・酸化サイクルを認めることができる。

触媒作動温度での CO/O。による還元・酸化サイ クル中に生成する金属中のCu原子の平均配位数(N 4.9-5.0) は無限結晶中のそれ(N=12.0)に比べて著 しく小さい(表 2)。このことは活性種が微粒子であ ることを示唆している。すなわち、表面原子の割合 が大きい微粒子における原子の平均配位数は、巨大 結晶中のそれに比べて小さくなるということである。 ここで, 球形粒子を仮定して, Greegor-Lytle の 理論²¹⁾を用いて計算すると、N=5.0のCu金属は6 Å程度の粒径であり,約10個のCu原子から成るク ラスタということになる。さらに, 触媒作動状態に おいてこの配位数が変化しないことから(表2),活 性種も 10 個の Cu 原子から成る CuO クラスタであ ると結論される。このような微粒子はY型ゼオライ トの super cage (約12Å)の中に存在しうるし, 通常のX線回折の測定によって観測することは困難 なのである。

5. おわりに

酸化触媒としての銅イオン交換ゼオライトは、 Cu-SiO₂やCu-Al₂O₈等の担持酸化物触媒に比べ て低活性であるという理由から、これまであまり研 究の対象とはならなかった。したがって、その特性 についても未知の部分を多く残している。しかしな がら、還元・酸化処理を一例として、適切な前処理 を施こすことによって、このゼオライトに通常触媒 を凌駕する触媒能を具備させることができるのであ る。特に,低温領域において優れた触媒能を示す活 性化銅ゼオライトは,高温では副反応生成物が問題 となる部分酸化反応や複雑な有機化合物の酸化反応 における選択率の向上のために,有効な固体触媒と して一考に値するであろう。

参考文献

- 1) US Patent 3,444,253 (1969); 3,497,462 (1970).
- M. Iwamoto, S. Yokoo, K. Sakai and S. Kagawa, J. Chem. Soc., Faraday Trans. 1, 77, 1629 (1981).
- 3) H. Arai, H. Tominaga and J. Tsuchiya, Proc. Int. Congr. Catal. 6th, 2, 997 (1977).
- 4) G. K. Boreskov, N. N. Bobrov, N. G. Maksimov, V. F. Anufrienko, K. G. Ione and N.A. Shestakova, *Dokl. Akad. Nauk SSSR*, **201**, 887 (1971).
- K. G. Ione, N. N. Bobrov, G. K. Boreskov and L. A. Vostrikova, *Dokl. Akad. Nauk SSSR*, 210, 388 (1973).
- 6) G. K. Boreskov, Proc. Int. Congr. Catal. 5th, 2, 981 (1973).
- N. G. Maksimov, K. G. Ione, V. F. Anufrienko, R. N. Kuzunetsev, N. N. Bobrov and G. K. Boreskov, *Dokl. Akad. Nauk SSSR*, 217, 135 (1974).
- M. Sano, T. Maruo, H. Yamatera, M. Suzuki and Y. Saito, J. Am. Chem. Soc., 109, 52 (1987).
- 9) S. Tanabe and H. Matsumoto, Appl. Catal., 45, 27 (1988).
- 10) J. O. Petunchi and W. K. Hall, J. Catal., 80, 403 (1983).
- 11) C. M. Nacchache and Y. B. Taarit, J. Catal., 22, 171 (1971).
- 12) R. G. Herman, J. H. Lunsford, H. K. Beyer, P. A. Jacobs and J. B. Uytterhoeven, *J. Phys. Chem.*, 79, 2388 (1975).
- P. A. Jacobs, W. DeWilde, R. A. Shoonhydt and J. B. Uytterhoeven, J. Chem. Soc., Faraday Trans. 1, 72, 1221 (1976).
- 14) I. E. Maxwell and E. Dent, J. Catal., 41, 412 (1976).
- 15) I. E. Maxwell, R. S. Downing and S. A. J. van Lange, J. Catal., 61, 485 (1980).
- 16) P. A. Jacobs and H. K. Beyer, J. Phys. Chem., 83, 1174 (1979).
- 17) H. Matsumoto and S. Tanabe, J. Chem. Soc., Chem. Commun., 1989, 875.
- 18) S. Tanabe and H. Matsumoto, Bull. Chem. Soc., JPN., 63, 192 (1990).
- 19) S. Tanabe and H. Matsumoto, *Chem. Lett.*, **1989**, 539.
- 20) H. Matsumoto and S. Tanabe, J. Phys. Chem., 94, 4207 (1990).
- 21) R. B. Greegor and F. W. Lytle, J. Catal., 63, 476 (1980).